
Item 100

Preparing Right of Way

1. DESCRIPTION

Prepare the right of way and designated easements for construction operations by removing and disposing of all obstructions when removal of such obstructions is not specifically shown on the plans to be paid by other items.

2. CONSTRUCTION

Protect designated features on the right of way and prune trees and shrubs as directed. Do not park equipment, service equipment, store materials, or disturb the root area under the branches of trees designated for preservation. Treat cuts on trees with an approved tree wound dressing within 20 min. of making a pruning cut or otherwise causing damage to the tree when shown on the plans. Follow all local and state regulations when burning. Pile and burn brush at approved locations as directed. Coordinate work with state and federal authorities when working in state or national forests or parks. Test, remove, and dispose of hazardous materials in accordance with Article 6.10., "Hazardous Materials."

Clear areas shown on the plans of all obstructions, except those landscape features that are to be preserved. Such obstructions include remains of houses and other structures, foundations, floor slabs, concrete, brick, lumber, plaster, septic tank drain fields, basements, abandoned utility pipes or conduits, equipment, fences, retaining walls, and other items as specified on the plans. Remove vegetation and other landscape features not designated for preservation, curb and gutter, driveways, paved parking areas, miscellaneous stone, sidewalks, drainage structures, manholes, inlets, abandoned railroad tracks, scrap iron, and debris, whether above or below ground. Removal of live utility facilities is not included in this Item. Remove culverts, storm sewers, manholes, and inlets in proper sequence to maintain traffic and drainage.

Notify the Engineer in writing when items not shown on the plans and not reasonably detectable (buried with no obvious indication of presence) are encountered and required to be removed. These items will be handled in accordance with Article 4.5., "Differing Site Conditions."

Remove obstructions not designated for preservation to 2 ft. below natural ground in areas receiving embankment. Remove obstructions to 2 ft. below the excavation level in areas to be excavated. Remove obstructions to 1 ft. below natural ground in all other areas. Cut trees and stumps off to ground level when allowed by the plans or directed. Plug the remaining ends of abandoned underground structures over 3 in. in diameter with concrete to form a tight closure. Backfill, compact, and restore areas where obstructions have been removed unless otherwise directed. Use approved material for backfilling. Dispose of wells in accordance with Item 103, "Disposal of Wells."

Accept ownership, unless otherwise directed, and dispose of removed materials and debris at locations off the right of way in accordance with local, state, and federal requirements.

3. MEASUREMENT

This Item will be measured by the acre; by the 100-ft. station, regardless of the width of the right of way; or by each tree removed.

4. PAYMENT

The work performed under this Article will not be paid for directly but will be subsidiary to the items of the contract.

5. Conformity with Plans, Specifications, and Special Provisions

Furnish materials and perform work in reasonably close conformity with the lines, grades, cross-sections, dimensions, details, gradations, physical and chemical characteristics of materials, and other requirements shown in the Contract. Reasonably close conformity limits are defined in the respective Items of the Contract or, if not defined, as determined by the Engineer. Obtain approval before deviating from the plans and approved working drawings. Do not perform work beyond the lines and grades shown on the plans or any extra work without the Engineer's authority. Work performed beyond the lines and grades shown on the plans or any extra work performed without authority is considered unauthorized and excluded from pay consideration. The Owner will not pay for material rejected due to improper fabrication, excess quantity, or any other reasons within the Contractor's control.

Item 300

Asphalts, Oils, and Emulsions

1. DESCRIPTION

Provide asphalt cements, cutback and emulsified asphalts, performance-graded asphalt binders, and other miscellaneous asphalt materials as specified on the plans.

2. MATERIALS

Provide asphalt materials that meet the stated requirements when tested in accordance with the referenced Department, AASHTO, and ASTM test methods. Use asphalt containing recycled materials only if the recycled components meet the requirements of Article 6.9, "Recycled Materials." Provide asphalt materials that have been preapproved for use by the Construction Division in accordance with [Tex-545-C](#).

Acronyms used in this Item are defined in Table 1.

Table 1
Acronyms

Acronym	Definition
Test Procedure Designations	
Tex	Department
T or R	AASHTO
D	ASTM
Polymer Modifier Designations	
P	polymer-modified
SBR or L	styrene-butadiene rubber (latex)
SBS	styrene-butadiene-styrene block co-polymer
TR	tire rubber (from ambient temperature grinding of truck and passenger tires)
AC	asphalt cement
AE	asphalt emulsion
AE-P	asphalt emulsion prime
A-R	asphalt-rubber
C	cationic
EAP&T	emulsified asphalt prime and tack
H-suffix	harder residue (lower penetration)
HF	high float
MC	medium-curing
MS	medium-setting
PCE	prime, cure, and erosion control
PG	performance grade
RC	rapid-curing
RS	rapid-setting
S-suffix	stockpile usage
SCM	special cutback material
SS	slow-setting

2.1. **Asphalt Cement.** Provide asphalt cement that is homogeneous, water-free, and nonfoaming when heated to 347°F, and meets the requirements in Table 2.

Table 2
Asphalt Cement

Property	Test Procedure	Viscosity Grade									
		AC-0.6		AC-1.5		AC-3		AC-5		AC-10	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Viscosity 140°F, poise 275°F, poise	T 202	40 0.4	80 —	100 0.7	200 —	250 1.1	350 —	400 1.4	600 —	800 1.9	1,200 —
Penetration, 77°F, 100g, 5 sec.	T 49	350	—	250	—	210	—	135	—	85	—
Flash point, C.O.C., °F	T 48	425	—	425	—	425	—	425	—	450	—
Solubility in trichloroethylene, %	T 44	99.0	—	99.0	—	99.0	—	99.0	—	99.0	—
Spot test	Tex-509-C	Neg.		Neg.		Neg.		Neg.		Neg.	
Tests on residue from Thin-Film Oven Test: Viscosity, 140°F, poise Ductility, ¹ 77°F 5 cm/min., cm	T 179 T 202 T 51	— 180 100	— — —	450 100	— — —	900 100	— — —	1,500 100	— — —	3,000 100	— — —

1. If AC-0.6 or AC-1.5 ductility at 77°F is less than 100 cm, material is acceptable if ductility at 60°F is more than 100 cm.

2.2.

Polymer-Modified Asphalt Cement. Provide polymer-modified asphalt cement that is smooth, homogeneous, and meets the requirements of Table 3. Supply samples of the base asphalt cement and polymer additives if requested.

Table 3
Polymer-Modified Asphalt Cement

Property	Test Procedure	Polymer-Modified Viscosity Grade									
		AC-5 w/2% SBR		AC-10 w/2% SBR		AC-15P		AC-20XP		AC-10-2TR	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Polymer		SBR		SBR		SBS		SBS		TR	
Polymer content, % (solids basis)	Tex-533-C	2.0	—	2.0	—	3.0	—	—	—	2.0	—
Dynamic shear, G*/sin δ, 64°C, 10 rad/s, kPa	T 315	—	—	—	—	—	—	1.0	—	—	1.0
Dynamic shear, G*/sin δ, 58°C, 10 rad/s, kPa	T 315	—	—	—	—	—	—	—	—	1.0	—
Viscosity 140°F, poise 275°F, poise	T 202 T 202	700 —	— 7.0	1,300 —	— 8.0	1,500 —	— 8.0	2,000 —	—	1,000 —	— 8.0
Penetration, 77°F, 100 g, 5 sec.	T 49	120	—	80	—	100	150	75	115	95	130
Ductility, 5cm/min., 39.2°F, cm	T 51	70	—	60	—	—	—	—	—	—	—
Elastic recovery, 50°F, %	Tex-539-C	—	—	—	—	55	—	55	—	30	—
Softening point, °F	T 53	—	—	—	—	—	—	120	—	110	—
Polymer separation, 48 hr.	Tex-540-C	None		None		None		None		None	
Flash point, C.O.C., °F	T 48	425	—	425	—	425	—	425	—	425	—
Tests on residue from RTFOT aging and pressure aging: Creep stiffness S, -18°C, MPa m-value, -18°C	Tex-541-C and R 28 T 313	— —	— —	— —	— —	300 0.300	— —	300 0.300	— —	300 0.300	— —

2.3.

Cutback Asphalt. Provide cutback asphalt that meets the requirements of Tables 4, 5, and 6 for the specified type and grade. Supply samples of the base asphalt cement and polymer additives if requested.

Table 4
Rapid-Curing Cutback Asphalt

Property	Test Procedure	Type-Grade					
		RC-250		RC-800		RC-3000	
		Min	Max	Min	Max	Min	Max
Kinematic viscosity, 140°F, cSt	T 201	250	400	800	1,600	3,000	6,000
Water, %	D95	—	0.2	—	0.2	—	0.2
Flash point, T.O.C., °F	T 79	80	—	80	—	80	—
Distillation test:	T 78						
Distillate, percentage by volume of total distillate to 680°F							
to 437°F		40	75	35	70	20	55
to 500°F		65	90	55	85	45	75
to 600°F		85	—	80	—	70	—
Residue from distillation, volume %		70	—	75	—	82	—
Tests on distillation residue:							
Viscosity, 140°F, poise	T 202	600	2400	600	2400	600	2400
Ductility, 5 cm/min., 77°F, cm	T 51	100	—	100	—	100	—
Solubility in trichloroethylene, %	T 44	99.0	—	99.0	—	99.0	—
Spot test	Tex-509-C		Neg.		Neg.		Neg.

Table 5
Medium-Curing Cutback Asphalt

Property	Test Procedure	Type-Grade							
		MC-30		MC-250		MC-800		MC-3000	
		Min	Max	Min	Max	Min	Max	Min	Max
Kinematic viscosity, 140°F, cSt	T 201	30	60	250	500	800	1,600	3,000	6,000
Water, %	D95	—	0.2	—	0.2	—	0.2	—	0.2
Flash point, T.O.C., °F	T 79	95	—	122	—	140	—	149	—
Distillation test:	T 78								
Distillate, percentage by volume of total distillate to 680°F									
to 437°F		—	35	—	20	—	—	—	—
to 500°F		30	75	5	55	—	40	—	15
to 600°F		75	95	60	90	45	85	15	75
Residue from distillation, volume %		50	—	67	—	75	—	80	—
Tests on distillation residue:									
Viscosity, 140°F, poise	T 202	300	1200	300	1200	300	1200	300	1200
Ductility, 5 cm/min., 77°F, cm	T 51	100	—	100	—	100	—	100	—
Solubility in trichloroethylene, %	T 44	99.0	—	99.0	—	99.0	—	99.0	—
Spot test	Tex-509-C		Neg.		Neg.		Neg.		Neg.

Table 6
Special-Use Cutback Asphalt

Property	Test Procedure	Type-Grade					
		MC-2400L		SCM I		SCM II	
		Min	Max	Min	Max	Min	Max
Kinematic viscosity, 140°F, cSt	T 201	2,400	4,800	500	1,000	1,000	2,000
Water, %	D95	—	0.2	—	0.2	—	0.2
Flash point, T.O.C., °F	T 79	150	—	175	—	175	—
Distillation test:	T 78	—	—	—	—	—	—
Distillate, percentage by volume of total distillate to 680°F to 437°F		—	—	—	—	—	—
to 500°F		—	35	—	0.5	—	0.5
to 600°F		35	80	20	60	15	50
Residue from distillation, volume %		78	—	76	—	82	—
Tests on distillation residue:		SBR	—	—	—	—	—
Polymer		2.0	—	—	—	—	—
Polymer content, % (solids basis)	Tex-533-C	150	300	180	—	180	—
Penetration, 100 g, 5 sec., 77°F	T 49	50	—	—	—	—	—
Ductility, 5 cm/min., 39.2°F, cm	T 51	99.0	—	99.0	—	99.0	—
Solubility in trichloroethylene, %	T 44	—	—	—	—	—	—

2.4.

Emulsified Asphalt. Provide emulsified asphalt that is homogeneous, does not separate after thorough mixing, and meets the requirements for the specified type and grade in Tables 7, 8, 9, and 10.

Table 7
Emulsified Asphalt

Property	Test Procedure	Type-Grade									
		Rapid-Setting		Medium-Setting				Slow-Setting			
		HFRS-2		MS-2		AES-300		SS-1		SS-1H	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol 77°F, sec.	T 72	—	—	—	—	75	400	20	100	20	100
122°F, sec.		150	400	100	300	—	—	—	—	—	—
Sieve test, %	T 59	—	0.1	—	0.1	—	0.1	—	0.1	—	0.1
Miscibility	T 59	—	—	—	—	—	—	Pass	Pass	Pass	Pass
Cement mixing, %	T 59	—	—	—	—	—	—	—	2.0	—	2.0
Coating ability and water resistance:	T 59	—	—	—	—	—	—	Good/Fair	—	—	—
Dry aggregate/after spray		—	—	—	—	—	—	Fair/Fair	—	—	—
Wet aggregate/after spray		—	—	—	—	—	—	—	—	—	—
Demulsibility, 35 mL of 0.02 N CaCl ₂ , %	T 59	50	—	—	30	—	—	—	—	—	—
Storage stability, 1 day, %	T 59	—	1	—	1	—	1	—	1	—	1
Freezing test, 3 cycles ¹	T 59	—	—	Pass		—	—	Pass	Pass	Pass	Pass
Distillation test:	T 59	65	—	65	—	65	—	60	—	60	—
Residue by distillation, % by wt.		—	0.5	—	0.5	—	5	—	0.5	—	0.5
Oil distillate, % by volume of emulsion		—	—	—	—	—	—	—	—	—	—
Tests on residue from distillation:											
Penetration, 77°F, 100 g, 5 sec.	T 49	100	140	120	160	300	—	120	160	70	100
Solubility in trichloroethylene, %	T 44	97.5	—	97.5	—	97.5	—	97.5	—	97.5	—
Ductility, 77°F, 5 cm/min., cm	T 51	100	—	100	—	—	—	100	—	80	—
Float test, 140°F, sec.	T 50	1,200	—	—	—	1,200	—	—	—	—	—

1. Applies only when the Engineer designates material for winter use.

Table 8
Cationic Emulsified Asphalt

Property	Test Procedure	Type-Grade											
		Rapid-Setting				Medium-Setting				Slow-Setting			
		CRS-2		CRS-2H		CMS-2		CMS-2S		CSS-1		CSS-1H	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol 77°F, sec. 122°F, sec.	T 72	—	—	—	—	—	—	—	—	20	100	20	100
		150	400	150	400	100	300	100	300	—	—	—	—
Sieve test, %	T 59	—	0.1	—	0.1	—	0.1	—	0.1	—	0.1	—	0.1
Cement mixing, %	T 59	—	—	—	—	—	—	—	—	—	2.0	—	2.0
Coating ability and water resistance: Dry aggregate/after spray Wet aggregate/after spray	T 59	—	—	—	—	Good/Fair	Good/Fair	—	—	—	—	—	—
		—	—	—	—	Fair/Fair	Fair/Fair	—	—	—	—	—	—
Demulsibility, 35 mL of 0.8% Sodium diethyl sulfosuccinate, %	T 59	70	—	70	—	—	—	—	—	—	—	—	—
Storage stability, 1 day, %	T 59	—	1	—	1	—	1	—	1	—	1	—	1
Particle charge	T 59	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive
Distillation test: Residue by distillation, % by wt. Oil distillate, % by volume of emulsion	T 59	65 —	— 0.5	65 —	— 0.5	65 —	— 7	65 —	— 5	60 —	— 0.5	60 —	— 0.5
Tests on residue from distillation: Penetration, 77°F, 100 g, 5 sec. Solubility in trichloroethylene, % Ductility, 77°F, 5 cm/min., cm	T 49 T 44 T 51	120 97.5 100	160 — —	70 97.5 80	110 — —	120 97.5 100	200 — —	300 97.5 —	— — —	120 97.5 100	160 — —	70 97.5 80	110 — —

Table 9
Polymer-Modified Emulsified Asphalt

Property	Test Procedure	Type-Grade											
		Rapid-Setting				Medium-Setting				Slow-Setting			
		RS-1P		HFRS-2P		AES-150P		AES-300P		AES-300S		SS-1P	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol 77°F, sec. 122°F, sec.	T 72	— 50	— 200	— 150	— 400	75	400	75	400	75	400	30	100
Sieve test, %	T 59	—	0.1	—	0.1	—	0.1	—	0.1	—	0.1	—	0.1
Miscibility	T 59	—	—	—	—	—	—	—	—	—	—	—	Pass
Coating ability and water resistance: Dry aggregate/after spray Wet aggregate/after spray	T 59	—	—	—	—	Good/Fair	Good/Fair	Fair/Fair	Fair/Fair	Good/Fair	Good/Fair	—	—
Demulsibility, 35 mL of 0.02 N CaCl_2 , %	T 59	60	—	50	—	—	—	—	—	—	—	—	—
Storage stability, 1 day, %	T 59	—	1	—	1	—	1	—	1	—	1	—	1
Breaking index, g	Tex-542-C	—	80	—	—	—	—	—	—	—	—	—	—
Distillation test: ¹ Residue by distillation, % by wt. Oil distillate, % by volume of emulsion	T 59	65 —	— 3	65 —	— 0.5	65 —	— 3	65 —	— 5	65 —	— 7	60 —	— 0.5
Tests on residue from distillation: Polymer content, wt. % (solids basis)	Tex-533-C	—	—	3.0	—	—	—	—	—	—	—	3.0	—
Penetration, 77°F, 100 g, 5 sec.	T 49	225	300	90	140	150	300	300	—	300	—	100	140
Solubility in trichloroethylene, %	T 44	97.0	—	97.0	—	97.0	—	97.0	—	97.0	—	97.0	—
Viscosity, 140°F, poise	T 202	—	—	1,500	—	—	—	—	—	—	—	1,300	—
Float test, 140°F, sec.	T 50	—	—	1,200	—	1,200	—	1,200	—	1,200	—	—	—
Ductility, ² 39.2°F, 5 cm/min., cm	T 51	—	—	50	—	—	—	—	—	—	—	50	—
Elastic recovery, ² 50°F, %	Tex-539-C	55	—	55	—	—	—	—	—	—	—	—	—
Tests on RTFO curing of distillation residue	Tex-541-C	—	—	—	—	50	—	50	—	30	—	—	—
Elastic recovery, 50°F, %	Tex-539-C	—	—	—	—	—	—	—	—	—	—	—	—

1. Exception to T 59: Bring the temperature on the lower thermometer slowly to 350°F $\pm 10^\circ\text{F}$. Maintain at this temperature for 20 min.

Complete total distillation in 60 min. (± 5 min.) from the first application of heat.

2. HFRS-2P must meet one of either the ductility or elastic recovery requirements.

Table 10
Polymer-Modified Cationic Emulsified Asphalt

Property	Test Procedure	Type-Grade											
		Rapid-Setting				Medium-Setting				Slow-Setting			
		CRS-1P		CRS-2P		CHFRS-2P		CMS-1P ³		CMS-2P ³		CSS-1P	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol 77°F, sec. 122°F, sec.	T 72	— 50	— 150	— 150	— 400	— 100	— 400	20 —	100 —	— 50	— 400	20 —	100 —
Sieve test, %	T 59	—	0.1	—	0.1	—	0.1	—	0.1	—	0.1	—	0.1
Demulsibility, 35 mL of 0.8% Sodium dioctyl sulfosuccinate, %	T 59	60	—	70	—	60	—	—	—	—	—	—	—
Storage stability, 1 day, %	T 59	—	1	—	1	—	1	—	—	—	—	—	1
Breaking index, g	Tex-542-C	—	80	—	—	—	—	—	—	—	—	—	—
Particle charge	T 59	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive
Distillation test: ¹ Residue by distillation, % by weight Oil distillate, % by volume of emulsion	T 59	65 — 3	— — —	65 0.5	— —	65 0.5	— —	65 0.5	— —	65 0.5	— —	62 — 0.5	— — —
Tests on residue from distillation:													
Polymer content, wt. % (solids basis)	Tex-533-C	—	—	3.0	—	3.0	—	—	—	—	—	3.0	—
Penetration, 77°F, 100 g, 5 sec.	T 49	225	300	90	150	80	130	40	—	40	—	55	90
Viscosity, 140°F, poise	T 202	—	—	1,300	—	1,300	—	—	5,000	—	5,000	—	—
Solubility in trichloroethylene, %	T 44	97.0	—	97.0	—	95.0	—	—	—	—	—	97.0	—
Softening point, °F	T 53	—	—	—	—	130	—	—	—	—	—	135	—
Ductility, 77°F, 5 cm/min., cm	T 51	—	—	—	—	—	—	—	—	—	—	70	—
Float test, 140°F, sec.	T 50	—	—	—	—	1,800	—	—	—	—	—	—	—
Ductility, ² 39.2°F, 5 cm/min., cm	T 51	—	—	50	—	—	—	—	—	—	—	—	—
Elastic recovery, ² 50°F, %	Tex-539-C	45	—	55	—	55	—	45	—	45	—	—	—
Tests on rejuvenating agent:													
Viscosity, 140°F, cSt	T 201	—	—	—	—	—	—	50	175	50	175	—	—
Flash point, C.O.C., °F	T 48	—	—	—	—	—	—	380	—	380	—	—	—
Saturates, % by weight	D2007	—	—	—	—	—	—	—	30	—	30	—	—
Solubility in n-pentane, % by weight	D2007	—	—	—	—	—	—	99	—	99	—	—	—
Tests on rejuvenating agent after TFO or RTFO:	T 240 or T 179												
Weight Change, %		—	—	—	—	—	—	—	6.5	—	6.5	—	—
Viscosity Ratio		—	—	—	—	—	—	—	3.0	—	3.0	—	—
Tests on latex: ⁴													
Tensile strength, die C dumbbell, psi	D412 ⁵	—	—	—	—	—	—	500	—	500	—	—	—
Change in mass after immersion in rejuvenating agent, %	D471	—	—	—	—	—	—	—	40 ⁶	—	40 ⁶	—	—

1. Exception to T 59: Bring the temperature on the lower thermometer slowly to 350°F ($\pm 0^{\circ}\text{F}$). Maintain at this temperature for 20 min. Complete total distillation in 60 min. (± 5 min.) from the first application of heat.
2. CRS-2P must meet one of either the ductility or elastic recovery requirements.
3. With all precertification samples of CMS-1P or CMS-2P, submit certified test reports showing that the rejuvenating agent and latex meet the stated requirements. Submit samples of these raw materials if requested by the Engineer.
4. Preparation of latex films: Use any substrate which produces a film of uniform cross-section. Apply latex using a drawdown tool that will deliver enough material to achieve desired residual thickness. Cure films for 14 days at 75°F and 50% relative humidity.
5. Cut samples for tensile strength determination using a crosshead speed of 20 in./min.
6. Specimen must remain intact after exposure and removal of excess rejuvenating agent.

2.5.

Specialty Emulsions. Provide specialty emulsion that is either asphalt-based or resin-based and meets the requirements of Table 11.

Table 11
Specialty Emulsions

Property	Test Procedure	Type-Grade					
		Medium-Setting		Slow-Setting			
		AE-P		EAP&T		PCE ¹	
		Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol 77°F, sec. 122°F, sec.	T 72	— 15	— 150	— —	— —	10	100
Sieve test, %	T 59	—	0.1	—	0.1	—	0.1
Miscibility ²	T 59	—		Pass		Pass	
Demulsibility, 35 mL of 0.10 N CaCl ₂ , %	T 59	—	70	—	—	—	—
Storage stability, 1 day, %	T 59	—	1	—	1	—	—
Particle size, ⁵ % by volume < 2.5 μm	Tex-238-F³	—	—	90	—	90	—
Asphalt emulsion distillation to 500°F followed by Cutback asphalt distillation of residue to 680°F: Residue after both distillations, % by wt. Total oil distillate from both distillations, % by volume of emulsion	T 59 & T 78	40 25	— 40	— —	— —	— —	— —
Residue by distillation, % by wt.	T 59	—	—	60	—	—	—
Residue by evaporation, ⁴ % by wt.	T 59	—	—	—	—	60	—
Tests on residue after all distillation(s): Viscosity, 140°F, poise Kinematic viscosity, ⁵ 140°F, cSt Flash point C.O.C., °F Solubility in trichloroethylene, % Float test, 122°F, sec.	T 202 T 201 T 48 T 44 T 50	— — — 97.5 50	— — — — 200	800 — — — —	— — — — —	— 100 400 — —	— 350 — — —

Supply with each shipment of PCE:

- a copy of a lab report from an approved analytical lab, signed by a lab official, indicating the PCE formulation does not meet any characteristics of a Resource Conservation Recovery Act (RCRA) hazardous waste.
- a certification from the producer that the formulation supplied does not differ from the one tested and that no listed RCRA hazardous wastes or Polychlorinated Biphenyls (PCBs) have been mixed with the product; and
- a Safety Data Sheet.

Exception to T 59: In dilution, use 350 mL of distilled or deionized water and a 1,000-mL beaker.

Use [Tex-238-F](#), beginning at "Particle Size Analysis by Laser Diffraction," with distilled or deionized water as a medium and no dispersant, or use another approved method.

Exception to T 59: Leave sample in the oven until foaming ceases, then cool and weigh.

PCE must meet either the kinematic viscosity requirement or the particle size requirement.

2.6.

Recycling Agent. Recycling agent and emulsified recycling agent must meet the requirements in Table 12. Additionally, recycling agent and residue from emulsified recycling agent, when added in the specified proportions to the recycled asphalt, must meet the properties specified on the plans.

Table 12
Recycling Agent and Emulsified Recycling Agent

Property	Test Procedure	Recycling Agent		Emulsified Recycling Agent	
		Min	Max	Min	Max
Viscosity, Saybolt Furol, 77°F, sec.	T 72	—	—	15	100
Sieve test, %	T 59	—	—	—	0.1
Miscibility ¹	T 59	—	—	No coagulation	
Residue by evaporation, ² % by wt.	T 59	—	—	60	—
Tests on recycling agent or residue from evaporation:					
Flash point, C.O.C., °F	T 48	400	—	400	—
Kinematic viscosity,	T 201				
140°F, cSt		75	200	75	200
275°F, cSt		—	10.0	—	10.0

1. Exception to T 59: Use 0.02 N CaCl₂ solution in place of water.
2. Exception to T 59: Maintain sample at 300°F until foaming ceases, then cool and weigh.

2.7. **Crumb Rubber Modifier.** Crumb rubber modifier (CRM) consists of automobile and truck tires processed by ambient temperature grinding.

CRM must be:

- free from contaminants including fabric, metal, and mineral and other nonrubber substances.
- free-flowing; and
- nonfoaming when added to hot asphalt binder.

Ensure rubber gradation meets the requirements of the grades in Table 13 when tested in accordance with [Tex-200-F](#), Part I, using a 50-g sample.

Table 13
CRM Gradations

Sieve Size (% Passing)	Grade A		Grade B		Grade C		Grade D	Grade E
	Min	Max	Min	Max	Min	Max		
#8	100	—	—	—	—	—		
#10	95	100	100	—	—	—		
#16	—	—	70	100	100	—		
#30	—	—	25	60	90	100		
#40	—	—	—	—	45	100		
#50	0	10	—	—	—	—		
#200	—	—	0	5	—	—		

2.8. **Crack Sealer.** Provide polymer-modified asphalt-emulsion crack sealer meeting the requirements of Table 14. Provide rubber-asphalt crack sealer meeting the requirements of Table 15.

Table 14
Polymer-Modified Asphalt-Emulsion Crack Sealer

Property	Test Procedure	Min	Max
Rotational viscosity, 77°F, cP	D 2196, Method A	10,000	25,000
Sieve test, %	T 59	—	0.1
Storage stability, 1 day, %	T 59	—	1
Evaporation			
Residue by evaporation, % by wt.	Tex-543-C	65	—
Tests on residue from evaporation:			
Penetration, 77°F, 100 g, 5 sec.	T 49	35	75
Softening point, °F	T 53	140	—
Ductility, 39.2°F, 5 cm/min., cm	T 51	100	—

Table 15
Rubber-Asphalt Crack Sealer

Property	Test Procedure	Class A		Class B	
		Min	Max	Min	Max
CRM content, Grade A or B, % by wt.	Tex-544-C	22	26	—	—
CRM content, Grade B, % by wt.	Tex-544-C	—	—	13	17
Virgin rubber content, ¹ % by wt.		—	—	2	—
Flash point, ² C.O.C., °F	T 48	400	—	400	—
Penetration, ³ 77°F, 150 g, 5 sec.	T 49	30	50	30	50
Penetration, ³ 32°F, 200 g, 60 sec.	T 49	12	—	12	—
Softening point, °F	T 53	—	—	170	—
Bond Test, non-immersed, 0.5 in specimen, 50% extension, 20°F ⁴	D5329	—	—	Pass	

1. Provide certification that the Min % virgin rubber was added.
2. Agitate the sealing compound with a 3/8- to 1/2-in. (9.5- to 12.7-mm) wide, square-end metal spatula to bring the material on the bottom of the cup to the surface (i.e., turn the material over) before passing the test flame over the cup. Start at one side of the thermometer, move around to the other, and then return to the starting point using 8 to 10 rapid circular strokes. Accomplish agitation in 3 to 4 sec. Pass the test flame over the cup immediately after stirring is completed.
3. Exception to T 49: Substitute the cone specified in D 217 for the penetration needle.
4. Allow no crack in the crack sealing materials or break in the bond between the sealer and the mortar blocks over 1/4 in. deep for any specimen after completion of the test.

2.9.

Asphalt-Rubber Binders. Provide asphalt-rubber (A-R) binders that are mixtures of asphalt binder and CRM, which have been reacted at elevated temperatures. Provide A-R binders meeting D6114 and containing a minimum of 15% CRM by weight. Provide Types I or II, containing CRM Grade C, for use in hot-mixed aggregate mixtures. Provide Types II or III, containing CRM Grade B, for use in surface treatment binder. Ensure binder properties meet the requirements of Table 16.

Table 16
A-R Binders

Property	Test Procedure	Binder Type					
		Type I		Type II		Type III	
		Min	Max	Min	Max	Min	Max
Apparent viscosity, 347°F, cP	D2196, Method A	1,500	5,000	1,500	5,000	1,500	5,000
Penetration, 77°F, 100 g, 5 sec.	T 49	25	75	25	75	50	100
Penetration, 39.2°F, 200 g, 60 sec.	T 49	10	—	15	—	25	—
Softening point, °F	T 53	135	—	130	—	125	—
Resilience, 77°F, %	D5329	25	—	20	—	10	—
Flash point, C.O.C., °F	T 48	450	—	450	—	450	—
Tests on residue from Thin-Film Oven Test: Retained penetration ratio, 39.2°F, 200 g, 60 sec., % of original	T 179	—	—	—	—	—	—
	T 49	75	—	75	—	75	—

2.10.

Performance-Graded Binders. Provide PG binders that are smooth and homogeneous, show no separation when tested in accordance with [Tex-540-C](#), and meet the requirements of Table 17.

Separation testing is not required if:

- a modifier is introduced separately at the mix plant either by injection in the asphalt line or mixer,
- the binder is blended on site in continuously agitated tanks, or
- binder acceptance is based on field samples taken from an in-line sampling port at the hot-mix plant after the addition of modifiers.

Table 17
Performance-Graded Binders

Property and Test Method	Performance Grade																											
	PG 58				PG 64				PG 70				PG 76				PG 82											
	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28										
Average 7-day max pavement design temperature, °C ¹	< 58				< 64				< 70				< 76				< 82											
Min pavement design temperature, °C ¹	> -22				> -28				> -34				> -16				> -22											
Original Binder																												
Flash point, T 48, Min, °C	230																											
Viscosity, T 316: ^{2,3}																												
Max, 3.0 Pa·s, test temperature, °C	135																											
Dynamic shear, T 315: ⁴																												
G*/sin(δ), Min, 1.00 kPa, Max, 2.00 kPa, ⁷	58				64				70				76				82											
Test temperature @ 10 rad/sec., °C																												
Elastic recovery, D 6084, 50°F, % Min	-	-	30	-	-	30	50	-	30	50	60	30	50	60	70	50	60	70										
Rolling Thin-Film Oven (Tex-541-C)																												
Mass loss, <u>Tex-541-C</u> , Max, %	1.0																											
Dynamic shear, T 315:																												
G*/sin(δ), Min, 2.20 kPa, Max, 5.00 kPa, ⁷	58				64				70				76				82											
Test temperature @ 10 rad/sec., °C																												
Pressure Aging Vessel (PAV) Residue (R 28)																												
PAV aging temperature, °C	100																											
Dynamic shear, T 315:	25	22	19	28	25	22	19	28	25	22	19	28	25	22	19	28	25	22										
G*·sin(δ), Max, 5,000 kPa																												
Test temperature @ 10 rad/sec., °C																												
Creep stiffness, T 313: ^{5,6}																												
S, max, 300 MPa, m-value, Min, 0.300	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18										
Test temperature @ 60 sec., °C																												
Direct tension, T 314: ⁶																												
Failure strain, Min, 1.0%	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18										
Test temperature @ 1.0 mm/min., °C																												

1. Pavement temperatures are estimated from air temperatures using an algorithm contained in a department-supplied computer program, may be provided by the Department, or by following the procedures outlined in AASHTO MP 2 and PP 28.
2. This requirement may be waived at the Department's discretion if the supplier warrants that the asphalt binder can be adequately pumped, mixed, and compacted at temperatures that meet all applicable safety, environmental, and constructability requirements. At test temperatures where the binder is a Newtonian fluid, any suitable standard means of viscosity measurement may be used, including capillary (T 201 or T 202) or rotational viscometry (T 316).
3. Viscosity at 135°C is an indicator of mixing and compaction temperatures that can be expected in the lab and field. High values may indicate high mixing and compaction temperatures. Additionally, significant variation can occur from batch to batch. Contractors should be aware that variation could significantly impact their mixing and compaction operations. Contractors are therefore responsible for addressing any constructability issues that may arise.
4. For quality control of unmodified asphalt binder production, measurement of the viscosity of the original asphalt binder may be substituted for dynamic shear measurements of G*/sin(δ) at test temperatures where the asphalt is a Newtonian fluid. Any suitable standard means of viscosity measurement may be used, including capillary (T 201 or T 202) or rotational viscometry (T 316).
5. Silicone beam molds, as described in AASHTO TP 1-93, are acceptable for use.
6. If creep stiffness is below 300 MPa, direct tension test is not required. If creep stiffness is between 300 and 600 MPa, the direct tension failure strain requirement can be used instead of the creep stiffness requirement. The m-value requirement must be satisfied in both cases.
7. Maximum values for unaged and RTFO aged dynamic shear apply only to materials used as substitute binders, as described in specification Items 340, "Dense-Graded Hot-Mix Asphalt (Small Quantity)," 341, "Dense-Graded Hot-Mix Asphalt," and 344, "Superpave Mixtures."

3. EQUIPMENT

Provide all equipment necessary to transport, store, sample, heat, apply, and incorporate asphalts, oils, and emulsions.

4. CONSTRUCTION

Typical Material Use. Use materials shown in Table 18, unless otherwise determined by the Engineer.

Table 18
Typical Material Use

Material Application	Typically Used Materials
Hot-mixed, hot-laid asphalt mixtures	PG binders, A-R binders Types I and II
Surface treatment	AC-5, AC-10, AC-5 w/2% SBR, AC-10 w/2% SBR, AC-15P, AC-20XP, AC-10-2TR, AC-20-5TR, HFRS-2, MS-2, CRS-2, CRS-2H, HFRS-2P, CRS-2P, CHFRS-2P, A-R binders Types II and III
Surface treatment (cool weather)	RS-1P, CRS-1P, RC-250, RC-800, RC-3000, MC-250, MC-800, MC-3000, MC-2400L
Precoating	AC-5, AC-10, PG 64-22, SS-1, SS-1H, CSS-1, CSS-1H
Tack coat	PG Binders, SS-1H, CSS-1H, EAP&T
Fog seal	SS-1, SS-1H, CSS-1, CSS-1H
Hot-mixed, cold-laid asphalt mixtures	AC-0.6, AC-1.5, AC-3, AES-300, AES-300P, CMS-2, CMS-2S
Patching mix	MC-800, SCM I, SCM II, AES-300S
Recycling	AC-0.6, AC-1.5, AC-3, AES-150P, AES-300P, recycling agent, emulsified recycling agent
Crack sealing	SS-1P, polymer mod AE crack sealant, rubber asphalt crack sealers (Class A, Class B)
Micro surfacing	CSS-1P
Prime	MC-30, AE-P, EAP&T, PCE
Curing membrane	SS-1, SS-1H, CSS-1, CSS-1H, PCE
Erosion control	SS-1, SS-1H, CSS-1, CSS-1H, PCE

4.1.

Storage and Application Temperatures. Use storage and application temperatures in accordance with Table 19. Store and apply materials at the lowest temperature yielding satisfactory results. Follow the manufacturer's instructions for any agitation requirements in storage. Manufacturer's instructions regarding recommended application and storage temperatures supersede those of Table 19.

Table 19
Storage and Application Temperatures

Type-Grade	Application		Storage Maximum (°F)
	Recommended Range (°F)	Maximum Allowable (°F)	
AC-0.6, AC-1.5, AC-3	200-300	350	350
AC-5, AC-10	275-350	350	350
AC-5 w/2% SBR, AC-10 w/2% SBR, AC-15P, AC-20-5TR	300-375	375	360
RC-250	125-180	200	200
RC-800	170-230	260	260
RC-3000	215-275	285	285
MC-30, AE-P	70-150	175	175
MC-250	125-210	240	240
MC-800, SCM I, SCM II	175-260	275	275
MC-3000, MC-2400L	225-275	290	290
HFRS-2, MS-2, CRS-2, CRS-2H, HFRS-2P, CRS-2P, CMS-2, CMS-2S, AES-300, AES-300S, AES-150P, AES-300P	120-160	180	180
SS-1, SS-1H, CSS-1, CSS-1H, PCE, EAP&T, SS-1P, RS-1P, CRS-1P, CSS-1P, recycling agent, emulsified recycling agent, polymer mod AE crack sealant	50-130	140	140
PG binders	275-350	350	350
Rubber asphalt crack sealers (Class A, Class B)	350-375	400	-
A-R binders Types I, II, and III	325-425	425	425

5.

MEASUREMENT AND PAYMENT

The work performed, materials furnished, equipment, labor, tools, and incidentals will not be measured or paid for directly but is subsidiary or is included in payment for other pertinent items.

Salvaging, Hauling, and Stockpiling Reclaimable Asphalt Pavement

1. DESCRIPTION

Salvage, haul, and stockpile existing asphalt material.

2. CONSTRUCTION

Remove dirt, raised pavement markings, and other debris, as directed. Remove the reclaimable asphalt material as shown on the plans or as directed. Ensure that 95% of the reclaimed material passes a 2 in. sieve unless otherwise shown on the plans. Do not contaminate asphalt material during its removal, transportation, or storage. Repair remaining pavement that is damaged by the removal operations.

Provide a clean, smooth, and well-drained stockpile area free of trash, weeds, and grass. Separate different types or quality of asphalt material into different stockpiles as directed. Stockpile material as shown on the plans or as directed.

The Department retains ownership of the reclaimed asphalt material unless otherwise shown on the plans. The plans or the Engineer may allow or require the use of salvaged material for other items in the Contract. Stockpile the salvaged material at the location shown on the plans or as directed if not used in other construction items of this Contract.

3. MEASUREMENT

This Item will be measured by the cubic yard of material calculated by the average end area method in the stockpile, or the square yard in its original position.

4. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Salvaging, Hauling, and Stockpiling Reclaimable Asphalt Pavement" for cubic yard measurement, and for "Salvaging, Hauling, and Stockpiling Reclaimable Asphalt Pavement (Depth Specified)" for square yard measurement. This price is full compensation for cleaning and removing existing pavement; stockpile area preparation; loading, crushing, or breaking, hauling, and stockpiling material; and material, equipment, labor, tools, supplies, and incidentals.

1. DESCRIPTION

Prepare and treat existing or newly constructed surface with an asphalt binder or other specialty prime coat binder material. Apply blotter material as required.

2. MATERIALS

- 2.1. **Binder.** Use material of the type and grade shown on the plans in accordance with Item 300, "Asphalts, Oils, and Emulsions," or as listed in the Department's MPL for prime coat binders.
- 2.2. **Blotter.** Use either base course sweepings obtained from cleaning the base or native sand as blotter materials unless otherwise shown on the plans or approved.

3. EQUIPMENT

Provide applicable equipment in accordance with Article 316.3., "Equipment."

4. CONSTRUCTION

- 4.1. **General.** Apply the mixture when the air temperature is at or above 60°F, or above 50°F and rising. Measure the air temperature in the shade away from artificial heat. The Engineer will determine when weather conditions are suitable for application.

Do not permit traffic, hauling, or placement of subsequent courses over freshly constructed prime coats. Maintain the primed surface until placement of subsequent courses or acceptance of the work.

- 4.2. **Surface Preparation.** Prepare the surface by sweeping or other approved methods. Lightly sprinkle the surface with water before applying bituminous material, when directed, to control dust and ensure absorption.

4.3. Application.

- 4.3.1. **Binder.** The Engineer will select the application temperature within the limits recommended in Item 300, "Asphalts, Oils, and Emulsions," or by the material manufacturer. Apply material within 15°F of the selected temperature but do not exceed the maximum allowable temperature.

Distribute the material smoothly and evenly at the rate selected by the Engineer. Roll the freshly applied prime coat with a pneumatic-tire roller to ensure penetration when directed.

- 4.3.2. **Blotter.** Spread blotter material before allowing traffic to use a primed surface. Apply blotter material to primed surface at the specified rate when "Prime Coat and Blotter" is shown on the plans as a bid item or as directed. Apply blotter to spot locations when "Prime Coat" is shown on the plans as a bid item or as directed to accommodate traffic movement through the work area. Remove blotter material before placing the surface. Dispose of blotter material according to applicable state and federal requirements.

5. MEASUREMENT

This Item will be measured by the gallon of binder placed and accepted.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Prime Coat" or "Prime Coat and Blotter" of the type and grade of binder specified. This price is full compensation for cleaning and sprinkling the area to be primed; materials, including blotter material; and rolling, equipment, labor, tools, and incidentals.

1. DESCRIPTION

Construct a surface treatment consisting of one or more applications of a single layer of asphalt material covered with a single layer of aggregate.

2. MATERIALS

Furnish materials of the type and grade shown on the plans in accordance with the following:

2.1. **Asphalt.** Furnish asphalt materials meeting the requirements of Item 300, "Asphalts, Oils, and Emulsions."

Furnish Type II or Type III A-R binder in accordance with Section 300.2.9., "Asphalt-Rubber Binders," as shown on the plans. Furnish a blend design for approval. Include in the design, at a minimum, the following:

- manufacturer and grade of asphalt cement.
- manufacturer and grade of crumb rubber.
- manufacturer, type, and percentage of extender oil, if used.
- test report on crumb rubber gradation in accordance with [Tex-200-F](#), Part I;
- design percentage of crumb rubber versus asphalt content.
- blending temperature; and
- test results on the properties at reaction times of 60, 90, 240, 360, and 1,440 min. in accordance with Section 300.2.9., "Asphalt-Rubber Binders."

Furnish a new asphalt-rubber blend design if the grade or source for any of the components changes.

If a tack coat is specified when using asphalt-rubber, unless otherwise shown on the plans or approved, furnish CSS-1H, SS-1H, or a performance grade (PG) binder with a minimum high temperature grade of PG 58 for tack coat binder. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use. If required, verify that emulsified asphalt proposed for use meets the minimum residual asphalt percentage specified in Item 300, "Asphalts, Oils, and Emulsions."

2.2. **Aggregate.** Furnish aggregate meeting Item 302, "Aggregates for Surface Treatments," of the type and grade shown on the plans. Unless otherwise shown on the plans, furnish aggregate with a minimum B Surface Aggregate Classification.

2.3. **Materials Selections.** Furnish asphalt and aggregate shown on the plans.

3. EQUIPMENT

3.1. **Distributor.** Furnish a distributor that will apply the asphalt material uniformly at the specified rate or as directed.

3.1.1. **Transverse Variable Rate.** When a transverse variable rate is shown on the plans, ensure that the nozzles outside the wheel paths will output a predetermined percentage more asphalt material by volume than the nozzles over the wheel paths. Use a dual spray bar distributor as desired to provide for a transverse variable rate.

3.1.2. **Agitation for Asphalt-Rubber.** If using asphalt-rubber, furnish a distributor capable of keeping the rubber in uniform suspension and adequately mixing the asphalt, rubber, and any additional additives.

3.1.3. *Calibration.*

3.1.3.1. **Transverse Distribution.** Furnish a distributor test report, less than 1 yr. old, when tested in accordance with [Tex-922-K](#), Part III. The Department reserves the right to witness the calibration testing. Notify the Engineer 3 days before calibration testing.

Include the following documentation on the test report:

- the serial number of the distributor,
- a method that identifies the actual nozzle set used in the test, and
- the fan width of the nozzle set at a 12-in. bar height.

When a transverse variable rate is required, and a single spray bar is to be used, perform the test using the type and grade of asphalt material to be used on the project. The Engineer may verify the transverse rate and distribution at any time. If verification does not meet the requirements, correct deficiencies, and furnish a new test report.

3.1.3.2. **Tank Volume.** Furnish a volumetric calibration and strap stick for the distributor tank in accordance with [Tex-922-K](#), Part I.

Provide documentation of distributor calibration performed not more than 5 yr. before the date first used on the project. The Engineer may verify calibration accuracy in accordance with [Tex-922-K](#), Part II.

3.1.4. **Computerized Distributor.** When paying for asphalt material by weight, the Engineer may allow use of the computerized distributor display to verify application rates. Verify application rate accuracy at a frequency acceptable to the Engineer.

3.2. **Aggregate Spreader.** Use a continuous-feed, self-propelled spreader to apply aggregate uniformly at the specified rate or as directed. If racked in aggregate is specified on the plans, furnish a second aggregate spreader for the racked in aggregate to apply aggregate uniformly at the specified rate.

3.3. **Rollers.** Unless otherwise shown on the plans, furnish light pneumatic-tire rollers in accordance with Item 210, "Rolling."

3.4. **Broom.** Furnish rotary, self-propelled brooms.

3.5. **Asphalt Storage and Handling Equipment.** When the plans or the Engineer allows storage tanks, furnish a thermometer in each tank to indicate the asphalt temperature continuously. Keep equipment clean and free of leaks. Keep asphalt material free of contamination.

3.6. **Aggregate Haul Trucks.** Unless otherwise approved, use trucks of uniform capacity to deliver the aggregate. Provide documentation showing measurements and calculation in cubic yards. Clearly mark the calibrated level. Truck size may be limited when shown on the plans.

3.7. **Digital Distance Measuring Instrument.** Furnish a vehicle with a calibrated digital distance measuring instrument accurate to ± 6 ft. per mile.

4. CONSTRUCTION

4.1. **General.** Comply with the seal coat season as shown on the plans. Asphalt and aggregate rates shown on the plans are for estimating purposes only. Adjust the rates for existing conditions as directed.

4.2. **Temporary Aggregate Stockpiles.** The Engineer will approve the location of temporary aggregate stockpiles on the right of way before delivery. Place stockpiles in a manner that will not:

- obstruct traffic or sight distance,
- interfere with the access from abutting property, or
- interfere with roadway drainage.

Locate stockpiles a minimum of 30 ft. from roadway when possible. Sign and barricade as shown on the plans.

4.3. **Aggregate Furnished by the Department.** When shown on the plans, the Department will furnish aggregate to the Contractor without cost. Stockpile locations are shown on the plans.

4.4. **Adverse Weather Conditions.** Do not place surface treatments when, in the Engineer's opinion, general weather conditions are unsuitable. Meet the requirements for air and surface temperature shown below.

4.4.1. **Standard Temperature Limitations.** Apply seal coat when air temperature is above 50°F and rising. Do not apply seal coat when air temperature is 60°F and falling. In all cases, do not apply seal coat when surface temperature is below 60°F.

4.4.2. **Polymer-Modified Asphalt Cement Temperature Limitations.** When using materials described in Section 300.2.2., "Polymer Modified Asphalt Cement," apply seal coat when air temperature is above 70°F and rising. Do not apply seal coat when air temperature is 80°F and falling. In all cases, do not apply seal coat when surface temperature is below 70°F.

4.4.3. **Asphalt-Rubber Temperature Limitations.** Do not place hot asphalt-rubber seal coat when, in the Engineer's opinion, general weather conditions are unsuitable. Apply seal coat when the air temperature is 80°F and above, or above 70°F and rising. In all cases, do not apply seal coat when surface temperature is below 70°F.

4.4.4. **Cool Weather Night Air Temperature.** The Engineer reserves the right to review the **National Oceanic and Atmospheric Administration (NOAA)** weather forecast and determine if the nightly air temperature is suitable for asphalt placement to prevent aggregate loss.

4.4.5. **Cold Weather Application.** When asphalt application is allowed outside of the above temperature restrictions, the Engineer will approve the binder grade and the air and surface temperatures for asphalt material application. Apply seal coat at air and surface temperatures as directed.

4.5. **Mixing Hot A-R Binder.** If using asphalt-rubber, mix in accordance with the approved blend design required in Section 316.2.1., "Asphalt."

At the end of each shift, provide the Engineer with production documentation, which includes the following:

- amount and temperature of asphalt cement before addition of rubber,
- amount of rubber and any extender added,
- viscosity of each hot A-R batch just before roadway placement, and
- time of the rubber additions and viscosity tests.

4.6. **Surface Preparation.** Remove existing raised pavement markers. Repair any damage incurred by removal as directed. Remove dirt, dust, or other harmful material before sealing. When shown on the plans, remove vegetation and blade pavement edges. When directed, apply a tack coat before applying the hot asphalt-rubber treatment on an existing wearing surface in accordance with Section 340.2.5., "Tack Coat."

4.7. *Rock Land and Shot.*

4.7.1. **Definitions.**

- A "rock land" is the area covered at the aggregate rate directed with 1 truckload of aggregate.

- A "shot" is the area covered by 1 distributor load of asphalt material.

4.7.2. **Setting Lengths.** Calculate the lengths of both rock land and shot. Adjust shot length to be an even multiple of the rock land. Verify that the distributor has enough asphalt material to complete the entire shot length. Mark shot length before applying asphalt. When directed, mark length of each rock land to verify the aggregate rate.

4.8. Asphalt Placement.

4.8.1. **General.** The maximum shot width is the width of the current transverse distribution test required under Section 316.3.1.3.1., "Transverse Distribution," or the width of the aggregate spreader box, whichever is less. Adjust the shot width so operations do not encroach on traffic or interfere with the traffic control plan, as directed. Use paper or other approved material at the beginning and end of each shot to construct a straight transverse joint and to prevent overlapping of the asphalt. Unless otherwise approved, match longitudinal joints with the lane lines. The Engineer may require a string line if necessary to keep joints straight with no overlapping. Use sufficient pressure to flare the nozzles fully.

Select an application temperature, as approved, in accordance with Item 300, "Asphalts, Oils, and Emulsions." Uniformly apply the asphalt material at the rate directed, within 15°F of the approved temperature, and not above the maximum allowable temperature.

4.8.2. **Limitations.** Do not apply asphalt to the roadway until:

- traffic control methods and devices are in place as shown on the plans or as directed,
- the loaded aggregate spreader is in position and ready to begin,
- haul trucks are loaded with enough aggregate to cover the shot area and are in place behind the spreader box, and
- rollers are in place behind the haul trucks.

4.8.3. **Nonuniform Application.** Stop application if it is not uniform due to streaking, ridging, puddling, or flowing off the roadway surface. Verify equipment condition, operating procedures, application temperature, and material properties. Determine and correct the cause of nonuniform application. If the cause is high or low emulsion viscosity, replace emulsion with material that corrects the problem.

4.8.4. **Test Strips.** The Engineer may stop asphalt application and require construction of test strips at the Contractor's expense if any of the following occurs:

- nonuniformity of application continues after corrective action.
- on 3 consecutive shots, application rate differs by more than 0.03 gal. per square yard from the rate directed: or
- any shot differs by more than 0.05 gal. per square yard from the rate directed.

The Engineer will approve the test strip location. The Engineer may require additional test strips until surface treatment application meets specification requirements.

4.9. **Aggregate Placement.** As soon as possible, apply aggregate uniformly at the rate directed without causing the rock to roll over.

4.9.1. **Nonuniform Application.** Stop application if it is not uniform in the transverse direction. Verify equipment condition, operating procedures, and transverse application rate. The transverse application rate should be within 1 lb. Determine and correct the cause of nonuniform application.

4.10. **Rolling.** Start rolling operation on each shot as soon as aggregate is applied. Use sufficient rollers to cover the entire mat width in 1 pass, i.e., 1 direction. Roll in a staggered pattern. Unless otherwise shown on the plans, make a minimum of:

- 5 passes; or

- 3 passes when the asphalt material is an emulsion.

If rollers are unable to keep up with the spreader box, stop application until rollers have caught up, or furnish additional rollers. Keep roller tires asphalt-free.

- 4.11. **Patching.** Before rolling, repair spots where coverage is incomplete. Repair can be made by hand spotting or other approved method. When necessary, apply additional asphalt material to embed aggregate.
- 4.12. **Racked-in Aggregate.** If specified on the plans, apply racked-in aggregate after patching, uniformly at the rate directed. The racked-in aggregate must be applied before opening the roadway or intersection to traffic.
- 4.13. **Brooming.** After rolling, sweep as soon as aggregate has sufficiently bonded to remove excess. In areas of racked-in aggregate, sweep as directed.
- 4.14. **Final Acceptance.** Maintain seal coat until the Engineer accepts the work. Repair any surface failures. Before final project acceptance, remove all temporary stockpiles and restore the area to the original contour and grade.

5. MEASUREMENT

- 5.1 Asphalt Material, including all components including aggregate will be measured by the square yard.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit prices bid for "Asphalt," "Aggregate," and "Loading, Hauling, and Distributing Aggregate" of the types-grades specified on the plans. These prices are full compensation for surface preparation; furnishing, preparing, hauling, and placing materials; removing existing pavement markers and excess aggregate; rolling; cleaning up stockpiles; and equipment, labor, tools, and incidentals.

Equipment for Asphalt Concrete Pavement

1. DESCRIPTION

Provide equipment to produce, haul, place, compact, and core asphalt concrete pavement.

2. EQUIPMENT

Ensure weighing and measuring equipment complies with Item 520, "Weighing and Measuring Equipment." Synchronize equipment to produce a mixture meeting the required proportions.

2.1. **Production Equipment.** Provide:

- drum-mix type, weigh-batch, or modified weigh-batch mixing plants that ensure a uniform, continuous production.
- automatic proportioning and measuring devices with interlock cut-off circuits that stop operations if the control system malfunctions.
- visible readouts indicating the weight or volume of asphalt and aggregate proportions.
- safe and accurate means to take required samples by inspection forces.
- permanent means to check the output of metering devices and to perform calibration and weight checks; and
- additive-feed systems to ensure a uniform, continuous material flow in the desired proportion.

2.1.1. **Drum-Mix Plants.** Provide a mixing plant that complies with the requirements below.

2.1.1.1. **Aggregate Feed System.** Provide:

- a minimum of one cold aggregate bin for each stockpile of individual materials used to produce the mix.
- bins designed to prevent overflow of material.
- scalping screens or other approved methods to remove any oversized material, roots, or other objectionable materials.
- a feed system to ensure a uniform, continuous material flow in the desired proportion to the dryer.
- an integrated means for moisture compensation.
- belt scales, weigh box, or other approved devices to measure the weight of the combined aggregate; and
- cold aggregate bin flow indicators that automatically signal interrupted material flow.

2.1.1.2. **Reclaimed Asphalt Pavement (RAP) and Recycled Asphalt Shingles (RAS) Feed Systems.** Provide a minimum of one bin for each stockpile of RAP and RAS to weigh and feed the recycled material into the hot-mix plant.

2.1.1.3. **Mineral Filler Feed System.** Provide a closed system for mineral filler that maintains a constant supply with minimal loss of material through the exhaust system. Interlock the measuring device into the automatic plant controls to automatically adjust the supply of mineral filler to plant production and provide a consistent percentage to the mixture.

2.1.1.4. **Heating, Drying, and Mixing Systems.** Provide:

- a dryer or mixing system to agitate the aggregate during heating.
- a heating system that controls the temperature during production to prevent aggregate and asphalt

binder damage.

- a heating system that completely burns fuel and leaves no residue; and
- a recording thermometer that continuously measures and records the mixture discharge temperature.

2.1.1.5. **Dust Collection System.** Provide a dust collection system to collect fines generated by the drying and mixing process and reintroduce them into the mixing drum.

2.1.1.6. **Asphalt Binder Equipment.** Supply equipment to heat binder to the required temperature. Equip the heating apparatus with a continuously recording thermometer located at the highest temperature point. Produce a 24-hr. chart of the recorded temperature. Place a device with automatic temperature compensation that accurately meters the binder in the line leading to the mixer.

Furnish a sampling port on the line between the storage tank and mixer. Supply an additional sampling port between any additive blending device and mixer.

Supply an in-line viscosity-measuring device located between the blending unit and the mixing drum when A-R binder is specified. Provide a means to calibrate the meter on site when an asphalt mass flow meter is used.

2.1.1.7. **Mixture Storage and Discharge.** Provide a surge-storage system to minimize interruptions during operations unless otherwise approved. Furnish a gob hopper or other device to minimize segregation in the bin. Provide an automated system that weighs the mixture upon discharge and produces a ticket showing:

- date,
- project identification number,
- plant identification,
- mix identification,
- vehicle identification,
- total weight of the load,
- tare weight of the vehicle,
- weight of mixture in each load, and
- load number or sequential ticket number for the day.

2.1.1.8. **Truck Scales.** Provide standard platform scales at an approved location.

2.1.2. **Weigh-Batch Plants.** Provide a mixing plant that complies with Section 320.2.1.1., "Drum-Mix Plants," except as required below.

2.1.2.1. **Screening and Proportioning.** Provide enough hot bins to separate the aggregate and to control proportioning of the mixture type specified. Supply bins that discard excessive and oversized material through overflow chutes. Provide safe access for inspectors to obtain samples from the hot bins.

2.1.2.2. **Aggregate Weigh Box and Batching Scales.** Provide a weigh box and batching scales to hold and weigh a complete batch of aggregate. Provide an automatic proportioning system with low bin indicators that automatically stop when material level in any bin is not enough to complete the batch.

2.1.2.3. **Asphalt Binder Measuring System.** Provide bucket and scales with enough capacity to hold and weigh binder for one batch.

2.1.2.4. **Mixer.** Equip mixers with an adjustable automatic timer that controls the dry and wet mixing period and locks the discharge doors for the required mixing period. Furnish a pug mill with a mixing chamber large enough to prevent spillage.

2.1.3. **Modified Weigh-Batch Plants.** Provide a mixing plant that complies with Section 320.2.1.2., "Weigh-Batch Plants," except as specifically described below.

2.1.3.1. **Aggregate Feeds.** Aggregate control is required at the cold feeds. Hot bin screens are not required.

2.1.3.2. **Surge Bins.** Provide one or more bins large enough to produce 1 complete batch of mixture.

2.2. **Hauling Equipment.** Provide trucks with enclosed sides to prevent asphalt mixture loss. Cover each load of mixture with waterproof tarpaulins when shown on the plans or required by the Engineer. Clean all truck beds before use to ensure the mixture is not contaminated. Coat the inside truck beds, when necessary, with an approved release agent from the Department's MPL.

2.3. **Placement and Compaction Equipment.** Provide equipment that does not damage underlying pavement. Comply with laws and regulations concerning overweight vehicles. Use other equipment that will consistently produce satisfactory results, when approved.

2.3.1. **Asphalt Paver.** Furnish a paver that will produce a finished surface that meets longitudinal and transverse profile, typical section, and placement requirements. Ensure the paver does not support the weight of any portion of hauling equipment other than the connection. Provide loading equipment that does not transmit vibrations or other motions to the paver that adversely affect the finished pavement quality. Equip the paver with an automatic, dual, longitudinal-grade control system and an automatic, transverse-grade control system.

2.3.1.1. **Tractor Unit.** Supply a tractor unit that can push or propel vehicles, dumping directly into the finishing machine to obtain the desired lines and grades to eliminate any hand finishing. Equip the unit with a hitch able to maintain contact between the hauling equipment's rear wheels and the finishing machine's pusher rollers while mixture is unloaded.

2.3.1.2. **Screed.** Provide a heated compacting screed that will produce a finished surface that meets longitudinal and transverse profile, typical section, and placement requirements. Screeed extensions must provide the same compacting action and heating as the main unit unless otherwise approved.

2.3.1.3. **Grade Reference.** Provide a grade reference with enough support that the maximum deflection does not exceed 1/16 in. between supports. Ensure that the longitudinal controls can operate from any longitudinal grade reference including a string line, ski, mobile reference, or joint matching shoes.

2.3.2. **Material Transfer Devices.** Provide the specified type of device when shown on the plans. Ensure the devices provide a continuous, uniform mixture flow to the asphalt paver. Provide windrow pick-up equipment, when used, constructed to pick up substantially all roadway mixture placed in the windrow.

2.3.3. **Remixing Equipment.** Provide equipment, when required, that includes a pug mill, variable pitch augers, or variable diameter augers operating under a storage unit with a minimum capacity of 8 tons.

2.3.4. **Motor Grader.** Provide a self-propelled grader, when allowed, with a blade length of at least 12 ft. and a wheelbase of at least 16 ft.

2.3.5. **Thermal Imaging System or Hand-Held Thermal Camera.** Provide a thermal imaging system or hand-held thermal camera meeting the requirements of [Tex-244-F](#).

2.3.6. **Rollers.** Provide rollers meeting the requirements of Item 210, "Rolling," for each type of roller required for compaction.

2.3.7. **Straightedges and Templates.** Furnish 10-ft. straightedges and other templates as required or approved.

2.4. **Field Laboratory.** Provide and maintain a Type D Structure (Asphalt Mix Control Laboratory) unless otherwise shown on the plans in accordance with Item 504, "Field Office and Laboratory," and details shown on the plans.

2.5. **Coring Equipment.** Provide equipment suitable to obtain a pavement specimen meeting the dimensions for testing when coring is required.

3. MEASUREMENT AND PAYMENT

The work performed, materials furnished, equipment, labor, tools, and incidentals will not be measured or paid for directly but will be subsidiary to pertinent items.

Dense-Graded Hot-Mix Asphalt (Small Quantity)

1. DESCRIPTION

Construct a hot-mix asphalt (HMA) pavement layer composed of a compacted, dense-graded mixture of aggregate and asphalt binder mixed hot in a mixing plant. This specification is intended for small quantity (SQ) HMA projects, typically under 5,000 tons total production.

2. MATERIALS

Furnish uncontaminated materials of uniform quality that meet the requirements of the plans and specifications.

Notify the Engineer of all material sources and before changing any material source or formulation. The Engineer will verify that the specification requirements are met when the Contractor makes a source or formulation change, and may require a new laboratory mixture design, trial batch, or both. The Engineer may sample and test project materials at any time during the project to verify specification compliance in accordance with Item 6, "Control of Materials."

2.1.

Aggregate. Furnish aggregates from sources that conform to the requirements shown in Table 1 and as specified in this Section. Aggregate requirements in this Section, including those shown in Table 1, may be modified, or eliminated when shown on the plans. Additional aggregate requirements may be specified when shown on the plans. Provide aggregate stockpiles that meet the definitions in this Section for coarse, intermediate, or fine aggregate. Aggregate from reclaimed asphalt pavement (RAP) is not required to meet Table 1 requirements unless otherwise shown on the plans. Supply aggregates that meet the definitions in [Tex-100-E](#) for crushed gravel or crushed stone. The Engineer will designate the plant or the quarry as the sampling location. Provide samples from materials produced for the project. The Engineer will establish the Surface Aggregate Classification (SAC) and perform Los Angeles abrasion, magnesium sulfate soundness, and Micro-Deval tests. Perform all other aggregate quality tests listed in Table 1. Document all test results on the mixture design report. The Engineer may perform tests on independent or split samples to verify Contractor test results. Stockpile aggregates for each source and type separately. Determine aggregate gradations for mixture design and production testing based on the washed sieve analysis given in [Tex-200-F](#), Part II.

2.1.1.

Coarse Aggregate. Coarse aggregate stockpiles must have no more than 20% material passing the No. 8 sieve. Aggregates from sources listed in the Department's *Bituminous Rated Source Quality Catalog* (BRSQC) are preapproved for use. Use only the rated values for hot mix listed in the BRSQC. Rated values for surface treatment (ST) do not apply to coarse aggregate sources used in hot-mix asphalt.

For sources not listed on the Department's BRSQC:

- build an individual stockpile for each material.
- request the Department test the stockpile for specification compliance; and
- once approved, do not add material to the stockpile unless otherwise approved.

Provide aggregate from non-listed sources only when tested by the Engineer and approved before use. Allow 30 calendar days for the Engineer to sample, test, and report results for non-listed sources.

Provide coarse aggregate with at least the minimum SAC shown on the plans. SAC requirements only apply to aggregates used on the surface of travel lanes. SAC requirements apply to aggregates used on surfaces other than travel lanes when shown on the plans. The SAC for sources on the Department's *Aggregate Quality Monitoring Program* (AQMP) ([Tex-499-A](#)) is listed in the BRSQC.

2.1.1.1. **Blending Class, A and Class B Aggregates.** Class B aggregate meeting all other requirements in Table 1 may be blended with a Class A aggregate to meet requirements for Class A materials. Ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source when blending Class, A and B aggregates to meet a Class A requirement. Blend by volume if the bulk specific gravities of the Class A and B aggregates differ by more than 0.300. Coarse aggregate from RAP and Recycled Asphalt Shingles (RAS) will be considered as Class B aggregate for blending purposes.

The Engineer may perform tests at any time during production, when the Contractor blends Class A and B aggregates to meet a Class A requirement, to ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source. The Engineer will use the Department's mix design template, when electing to verify conformance, to calculate the percent of Class A aggregate retained on the No. 4 sieve by inputting the bin percentages shown from readouts in the control room at the time of production and stockpile gradations measured at the time of production. The Engineer may determine the gradations based on either washed or dry sieve analysis from samples obtained from individual aggregate cold feed bins or aggregate stockpiles. The Engineer may perform spot checks using the gradations supplied by the Contractor on the mixture design report as an input for the template; however, a failing spot check will require confirmation with a stockpile gradation determined by the Engineer.

2.1.2. **Intermediate Aggregate.** Aggregates not meeting the definition of coarse or fine aggregate will be defined as intermediate aggregate. Supply intermediate aggregates, when used that are free from organic impurities.

The Engineer may test the intermediate aggregate in accordance with [Tex-408-A](#) to verify the material is free from organic impurities. Supply intermediate aggregate from coarse aggregate sources, when used that meet the requirements shown in Table 1 unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve, and verify that it meets the requirements in Table 1 for crushed face count ([Tex-460-A](#)) and flat and elongated particles ([Tex-280-F](#)).

2.1.3. **Fine Aggregate.** Fine aggregates consist of manufactured sands, screenings, and field sands. Fine aggregate stockpiles must meet the gradation requirements in Table 2. Supply fine aggregates that are free from organic impurities. The Engineer may test the fine aggregate in accordance with [Tex-408-A](#) to verify the material is free from organic impurities. No more than 15% of the total aggregate may be field sand or other uncrushed fine aggregate. Use fine aggregate, with the exception of field sand, from coarse aggregate sources that meet the requirements shown in Table 1 unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve, and verify that it meets the requirements in Table 1 for crushed face count ([Tex-460-A](#)) and flat and elongated particles ([Tex-280-F](#)).

Table 1
Aggregate Quality Requirements

Property	Test Method	Requirement
Coarse Aggregate		
SAC	Tex-499-A (AQMP)	As shown on the plans
Deleterious material, %, Max	Tex-217-F , Part I	1.5
Decantation, %, Max	Tex-217-F , Part II	1.5
Micro-Deval abrasion, %	Tex-461-A	Note 1
Los Angeles abrasion, %, Max	Tex-410-A	40
Magnesium sulfate soundness, 5 cycles, %, Max	Tex-411-A	30
Crushed face count, ² %, Min	Tex-460-A , Part I	85
Flat and elongated particles @ 5:1, %, Max	Tex-280-F	10
Fine Aggregate		
Linear shrinkage, %, Max	Tex-107-E	3
Combined Aggregate³		
Sand equivalent, %, Min	Tex-203-F	45

1. Not used for acceptance purposes. Optional test used by the Engineer as an indicator of the need for further investigation.
2. Only applies to crushed gravel.
3. Aggregates, without mineral filler, RAP, RAS, or additives, combined as used in the job-mix formula (JMF).

Table 2
Gradation Requirements for Fine Aggregate

Sieve Size	% Passing by Weight or Volume
3/8"	100
#8	70–100
#200	0–30

2.2. **Mineral Filler.** Mineral filler consists of finely divided mineral matter such as agricultural lime, crusher fines, hydrated lime, or fly ash. Mineral filler is allowed unless otherwise shown on the plans. Use no more than 2% hydrated lime or fly ash unless otherwise shown on the plans. Use no more than 1% hydrated lime if a substitute binder is used unless otherwise shown on the plans or allowed. Test all mineral fillers except hydrated lime and fly ash in accordance with [Tex-107-E](#) to ensure specification compliance. The plans may require or disallow specific mineral fillers. Provide mineral filler, when used, that:

- is sufficiently dry, free-flowing, and free from clumps and foreign matter as determined by the Engineer.
- does not exceed 3% linear shrinkage when tested in accordance with [Tex-107-E](#); and
- meets the gradation requirements in Table 3.

Table 3
Gradation Requirements for Mineral Filler

Sieve Size	% Passing by Weight or Volume
#8	100
#200	55–100

2.3. **Baghouse Fines.** Fines collected by the baghouse or other dust-collecting equipment may be reintroduced into the mixing drum.

2.4. **Asphalt Binder.** Furnish the type and grade of performance-graded (PG) asphalt specified on the plans.

2.5. **Tack Coat.** Furnish CSS-1H, SS-1H, or a PG binder with a minimum high-temperature grade of PG 58 for tack coat binder in accordance with Item 300, "Asphalts, Oils, and Emulsions." Specialized or preferred tack coat materials may be allowed or required when shown on the plans. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use.

The Engineer will obtain at least one sample of the tack coat binder per project in accordance with [Tex-500-C](#), Part III, and test it to verify compliance with Item 300, "Asphalts, Oils, and Emulsions." The Engineer will obtain the sample from the asphalt distributor immediately before use.

2.6. **Additives.** Use the type and rate of additive specified when shown on the plans. Additives that facilitate mixing, compaction, or improve the quality of the mixture are allowed when approved. Provide the Engineer with documentation, such as the bill of lading, showing the quantity of additives used in the project unless otherwise directed.

2.6.1. **Lime and Liquid Antistripping Agent.** When lime or a liquid antistripping agent is used, add in accordance with Item 301, "Asphalt Antistripping Agents." Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum.

2.6.2. **Warm Mix Asphalt (WMA).** Warm Mix Asphalt (WMA) is defined as HMA that is produced within a target temperature discharge range of 215°F and 275°F using approved WMA additives or processes from the Department's MPL.

WMA is allowed for use on all projects and is required when shown on the plans. When WMA is required, the maximum placement or target discharge temperature for WMA will be set at a value below 275°F.

Department-approved WMA additives or processes may be used to facilitate mixing and compaction of HMA produced at target discharge temperatures above 275°F; however, such mixtures will not be defined as WMA.

2.7. **Recycled Materials.** Use of RAP and RAS is permitted unless otherwise shown on the plans. Do not exceed the maximum allowable percentages of RAP and RAS shown in Table 4. The allowable percentages shown in Table 4 may be decreased or increased when shown on the plans. Determine asphalt binder content and gradation of the RAP and RAS stockpiles for mixture design purposes in accordance with [Tex-236-F](#). The Engineer may verify the asphalt binder content of the stockpiles at any time during production. Perform other tests on RAP and RAS when shown on the plans. Asphalt binder from RAP and RAS is designated as recycled asphalt binder. Calculate and ensure that the ratio of the recycled asphalt binder to total binder does not exceed the percentages shown in Table 5 during mixture design and HMA production when RAP or RAS is used. Use a separate cold feed bin for each stockpile of RAP and RAS during HMA production.

Surface, intermediate, and base mixes referenced in Tables 4 and 5 are defined as follows:

- **Surface.** The final HMA lift placed at or near the top of the pavement structure.
- **Intermediate.** Mixtures placed below an HMA surface mix and less than or equal to 8.0 in. from the riding surface; and
- **Base.** Mixtures placed greater than 8.0 in. from the riding surface.

2.7.1. **RAP.** RAP is salvaged, milled, pulverized, broken, or crushed asphalt pavement. Crush or break RAP so that 100% of the particles pass the 2 in. sieve. Fractionated RAP is defined as 2 or more RAP stockpiles, divided into coarse and fine fractions.

Use of Contractor-owned RAP, including HMA plant waste, is permitted unless otherwise shown on the plans. Department-owned RAP stockpiles are available for the Contractor's use when the stockpile locations are shown on the plans. If Department-owned RAP is available for the Contractor's use, the Contractor may use Contractor-owned fractionated RAP and replace it with an equal quantity of Department-owned RAP. This allowance does not apply to a Contractor using unfractionated RAP. Department-owned RAP generated through required work on the Contract is available for the Contractor's use when shown on the plans. Perform any necessary tests to ensure Contractor- or Department-owned RAP is appropriate for use. The Department will not perform any tests or assume any liability for the quality of the Department-owned RAP unless otherwise shown on the plans. The Contractor will retain ownership of RAP generated on the project when shown on the plans.

The coarse RAP stockpile will contain only material retained by processing over a 3/8-in. or 1/2-in. screen unless otherwise approved. The fine RAP stockpile will contain only material passing the 3/8-in. or 1/2-in. screen unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 3/8-in.

or 1/2-in. screen to fractionate the RAP. The maximum percentages of fractionated RAP may be comprised of coarse or fine fractionated RAP or the combination of both coarse and fine fractionated RAP.

Do not use Department- or Contractor-owned RAP contaminated with dirt or other objectionable materials. Do not use Department- or Contractor-owned RAP if the decantation value exceeds 5% and the plasticity index is greater than 8. Test the stockpiled RAP for decantation in accordance with [Tex-406-A](#), Part I. Determine the plasticity index in accordance with [Tex-106-E](#) if the decantation value exceeds 5%. The decantation and plasticity index requirements do not apply to RAP samples with asphalt removed by extraction or ignition.

Do not intermingle Contractor-owned RAP stockpiles with Department-owned RAP stockpiles. Remove unused Contractor-owned RAP material from the project site upon completion of the project. Return unused Department-owned RAP to the designated stockpile location.

Table 4
Maximum Allowable Amounts of RAP¹

Maximum Allowable Fractionated RAP ² (%)			Maximum Allowable Unfractionated RAP ³ (%)		
Surface	Intermediate	Base	Surface	Intermediate	Base
20.0	30.0	40.0	10.0	10.0	10.0

1. Must also meet the recycled binder to total binder ratio shown in Table 5.
2. Up to 5% RAS may be used separately or as a replacement for fractionated RAP.
3. Unfractionated RAP may not be combined with fractionated RAP or RAS.

2.7.2.

RAS. Use of post-manufactured RAS or post-consumer RAS (tear-offs) is permitted unless otherwise shown on the plans. Up to 5% RAS may be used separately or as a replacement for fractionated RAP in accordance with Table 4 and Table 5. RAS is defined as processed asphalt shingle material from manufacturing of asphalt roofing shingles or from re-roofing residential structures. Post-manufactured RAS is processed manufacturer's shingle scrap by-product. Post-consumer RAS is processed shingle scrap removed from residential structures. Comply with all regulatory requirements stipulated for RAS by the TCEQ. RAS may be used separately or in conjunction with RAP.

Process the RAS by ambient grinding or granulating such that 100% of the particles pass the 3/8 in. sieve when tested in accordance with [Tex-200-F](#), Part I. Perform a sieve analysis on processed RAS material before extraction (or ignition) of the asphalt binder.

Add sand meeting the requirements of Table 1 and Table 2 or fine RAP to RAS stockpiles if needed to keep the processed material workable. Any stockpile that contains RAS will be considered a RAS stockpile and be limited to no more than 5.0% of the HMA mixture in accordance with Table 4.

Certify compliance of the RAS with [DMS-11000](#), "Evaluating and Using Nonhazardous Recyclable Materials Guidelines." Treat RAS as an established nonhazardous recyclable material if it has not come into contact with any hazardous materials. Use RAS from shingle sources on the Department's MPL. Remove substantially all materials before use that are not part of the shingle, such as wood, paper, metal, plastic, and felt paper. Determine the deleterious content of RAS material for mixture design purposes in accordance with [Tex-217-F](#), Part III. Do not use RAS if deleterious materials are more than 0.5% of the stockpiled RAS unless otherwise approved. Submit a sample for approval before submitting the mixture design. The Department will perform the testing for deleterious material of RAS to determine specification compliance.

2.8.

Substitute Binders. Unless otherwise shown on the plans, the Contractor may use a substitute PG binder listed in Table 5 instead of the PG binder originally specified, if the substitute PG binder and mixture made with the substitute PG binder meet the following:

- the substitute binder meets the specification requirements for the substitute binder grade in accordance with Section 300.2.10., "Performance-Graded Binders;" and
- the mixture has less than 10.0 mm of rutting on the Hamburg Wheel test ([Tex-242-F](#)) after the number of passes required for the originally specified binder. Use of substitute PG binders may only be allowed at the discretion of the Engineer if the Hamburg Wheel test results are between 10.0 mm and 12.5 mm.

Table 5
Allowable Substitute PG Binders and Maximum Recycled Binder Ratios

Originally Specified PG Binder	Allowable Substitute PG Binder	Maximum Ratio of Recycled Binder ¹ to Total Binder (%)		
		Surface	Intermediate	Base
HMA				
76-22 ²	70-22 or 64-22	20.0	20.0	20.0
	70-28 or 64-28	30.0	35.0	40.0
70-22 ²	64-22	20.0	20.0	20.0
	64-28 or 58-28	30.0	35.0	40.0
64-22 ²	58-28	30.0	35.0	40.0
76-28 ²	70-28 or 64-28	20.0	20.0	20.0
	64-34	30.0	35.0	40.0
70-28 ²	64-28 or 58-28	20.0	20.0	20.0
	64-34 or 58-34	30.0	35.0	40.0
64-28 ²	58-28	20.0	20.0	20.0
	58-34	30.0	35.0	40.0
WMA³				
76-22 ²	70-22 or 64-22	30.0	35.0	40.0
70-22 ²	64-22 or 58-28	30.0	35.0	40.0
64-22 ⁴	58-28	30.0	35.0	40.0
76-28 ²	70-28 or 64-28	30.0	35.0	40.0
70-28 ²	64-28 or 58-28	30.0	35.0	40.0
64-28 ⁴	58-28	30.0	35.0	40.0

1. Combined recycled binder from RAP and RAS.
2. Use no more than 20.0% recycled binder when using this originally specified PG binder.
3. WMA as defined in Section 340.2.6.2., "Warm Mix Asphalt (WMA)."
4. When used with WMA, this originally specified PG binder is allowed for use at the maximum recycled binder ratios shown in this table.

3. EQUIPMENT

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement."

4. CONSTRUCTION

Produce, haul, place, and compact the specified paving mixture. In addition to tests required by the specification, Contractors may perform other QC tests as deemed necessary. At any time during the project, the Engineer may perform production and placement tests as deemed necessary in accordance with Item 5, "Control of the Work." Schedule and participate in a pre-paving meeting with the Engineer on or before the first day of paving unless otherwise directed.

4.1.

Certification. Personnel certified by the Department-approved hot-mix asphalt certification program must conduct all mixture designs, sampling, and testing in accordance with Table 6. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning production and when personnel changes are made. Provide a mixture design developed and signed by a Level 2 certified specialist.

Table 6
Test Methods, Test Responsibility, and Minimum Certification Levels

Test Description	Test Method	Contractor	Engineer	Level ¹
1. Aggregate and Recycled Material Testing				
Sampling	Tex-221-F	✓	✓	1A
Dry sieve	Tex-200-F , Part I	✓	✓	1A
Washed sieve	Tex-200-F , Part II	✓	✓	1A
Deleterious material	Tex-217-F , Parts I & III	✓	✓	1A
Decantation	Tex-217-F , Part II	✓	✓	1A
Los Angeles abrasion	Tex-410-A		✓	TxDOT
Magnesium sulfate soundness	Tex-411-A		✓	TxDOT
Micro-Deval abrasion	Tex-461-A		✓	2
Crushed face count	Tex-460-A	✓	✓	2
Flat and elongated particles	Tex-280-F	✓	✓	2
Linear shrinkage	Tex-107-E	✓	✓	2
Sand equivalent	Tex-203-F	✓	✓	2
Organic impurities	Tex-408-A	✓	✓	2
2. Asphalt Binder & Tack Coat Sampling				
Asphalt binder sampling	Tex-500-C , Part II	✓	✓	1A/1B
Tack coat sampling	Tex-500-C , Part III	✓	✓	1A/1B
3. Mix Design & Verification				
Design and JMF changes	Tex-204-F	✓	✓	2
Mixing	Tex-205-F	✓	✓	2
Molding (TGC)	Tex-206-F	✓	✓	1A
Molding (SGC)	Tex-241-F	✓	✓	1A
Laboratory-molded density	Tex-207-F	✓	✓	1A
VMA ² (calculation only)	Tex-204-F	✓	✓	2
Rice gravity	Tex-227-F	✓	✓	1A
Ignition oven correction factors ³	Tex-236-F	✓	✓	2
Indirect tensile strength	Tex-226-F	✓	✓	2
Hamburg Wheel test	Tex-242-F	✓	✓	2
Boil test	Tex-530-C	✓	✓	1A
4. Production Testing				
Mixture sampling	Tex-222-F	✓	✓	1A
Molding (TGC)	Tex-206-F		✓	1A
Molding (SGC)	Tex-241-F		✓	1A
Laboratory-molded density	Tex-207-F		✓	1A
VMA ² (calculation only)	Tex-204-F		✓	1A
Rice gravity	Tex-227-F		✓	1A
Gradation & asphalt binder content ³	Tex-236-F		✓	1A
Moisture content	Tex-212-F		✓	1A
Hamburg Wheel test	Tex-242-F		✓	2
Boil test	Tex-530-C		✓	1A
5. Placement Testing				
Trimming roadway cores	Tex-207-F	✓	✓	1A/1B
In-place air voids	Tex-207-F		✓	1A/1B
Establish rolling pattern	Tex-207-F	✓		1B
Ride quality measurement	Tex-1001-S	✓	✓	Note 4

1. Level 1A, 1B, and 2 are certification levels provided by the Hot Mix Asphalt Center certification program.
2. Voids in mineral aggregates.
3. Refer to Section 340.4.8.3., "Production Testing," for exceptions to using an ignition oven.
4. Profiler and operator are required to be certified at the Texas A&M Transportation Institute facility when Surface Test Type B is specified.

4.2.

Reporting, Testing, and Responsibilities. Use Department-provided templates to record and calculate all test data pertaining to the mixture design. The Engineer will use Department templates for any production and placement testing. Obtain the current version of the templates at <http://www.txdot.gov/inside-txdot/forms-publications/consultants-contractors/forms/site-manager.html> or from the Engineer.

The maximum allowable time for the Engineer to exchange test data with the Contractor is as given in Table 7 unless otherwise approved. The Engineer will immediately report to the Contractor any test result that requires suspension of production or placement or that fails to meet the specification requirements.

Subsequent mix placed after test results are available to the Contractor, which require suspension of operations, may be considered unauthorized work. Unauthorized work will be accepted or rejected at the discretion of the Engineer in accordance with Article 5.3., "Conformity with Plans, Specifications, and Special Provisions."

Table 7
Reporting Schedule

Description	Reported By	Reported To	To Be Reported Within
<i>Production Testing</i>			
Gradation	Engineer	Contractor	1 working day of completion of the test
Asphalt binder content			
Laboratory-molded density			
VMA (calculation)			
Hamburg Wheel test			
Moisture content			
Boil test			
<i>Placement Testing</i>			
In-place air voids	Engineer	Contractor	1 working day of completion of the test ¹

1. 2 days are allowed if cores cannot be dried to constant weight within 1 day.

4.3. Mixture Design.

4.3.1.

Design Requirements. The Contractor may design the mixture using a Texas Gyratory Compactor (TGC) or a Superpave Gyratory Compactor (SGC) unless otherwise shown on the plans. Use the dense-graded design procedure provided in [Tex-204-F](#). Design the mixture to meet the requirements listed in Tables 1, 2, 3, 4, 5, 8, 9, and 10.

4.3.1.1.

Target Laboratory-Molded Density When the TGC Is Used. Design the mixture at a 96.5% target laboratory-molded density. Increase the target laboratory-molded density to 97.0% or 97.5% at the Contractor's discretion or when shown on the plans or specification.

4.3.1.2.

Design Number of Gyration (Ndesign) When the SGC Is Used. Design the mixture at 50 gyrations (Ndesign). Use a target laboratory-molded density of 96.0% to design the mixture; however, adjustments can be made to the Ndesign value as noted in Table 9. The Ndesign level may be reduced to no less than 35 gyrations at the Contractor's discretion.

Use an approved laboratory from the Department's MPL to perform the Hamburg Wheel test in accordance with [Tex-242-F](#), and provide results with the mixture design, or provide the laboratory mixture and request that the Department perform the Hamburg Wheel test. The Engineer will be allowed 10 working days to provide the Contractor with Hamburg Wheel test results on the laboratory mixture design.

The Engineer will provide the mixture design when shown on the plans. The Contractor may submit a new mixture design at any time during the project. The Engineer will verify and approve all mixture designs (JMF1) before the Contractor can begin production.

Provide the Engineer with a mixture design report using the Department-provided template. Include the following items in the report:

- the combined aggregate gradation, source, specific gravity, and percent of each material used.
- asphalt binder content and aggregate gradation of RAP and RAS stockpiles.
- the target laboratory-molded density (or Ndesign level when using the SGC).
- results of all applicable tests.

- the mixing and molding temperatures.
- the signature of the Level 2 person or persons that performed the design.
- the date the mixture design was performed; and
- a unique identification number for the mixture design.

Table 8
Master Gradation Limits (% Passing by Weight or Volume) and VMA Requirements

Sieve Size	A Coarse Base	B Fine Base	C Coarse Surface	D Fine Surface	F Fine Mixture
2"	100.0 ¹	—	—	—	—
1-1/2"	98.0–100.0	100.0 ¹	—	—	—
1"	78.0–94.0	98.0–100.0	100.0 ¹	—	—
3/4"	64.0–85.0	84.0–98.0	95.0–100.0	100.0 ¹	—
1/2"	50.0–70.0	—	—	98.0–100.0	100.0 ¹
3/8"	—	60.0–80.0	70.0–85.0	85.0–100.0	98.0–100.0
#4	30.0–50.0	40.0–60.0	43.0–63.0	50.0–70.0	70.0–90.0
#8	22.0–36.0	29.0–43.0	32.0–44.0	35.0–46.0	38.0–48.0
#30	8.0–23.0	13.0–28.0	14.0–28.0	15.0–29.0	12.0–27.0
#50	3.0–19.0	6.0–20.0	7.0–21.0	7.0–20.0	6.0–19.0
#200	2.0–7.0	2.0–7.0	2.0–7.0	2.0–7.0	2.0–7.0
Design VMA, % Minimum					
—	12.0	13.0	14.0	15.0	16.0
Production (Plant-Produced) VMA, % Minimum					
—	11.5	12.5	13.5	14.5	15.5

1. Defined as maximum sieve size. No tolerance allowed.

Table 9
Laboratory Mixture Design Properties

Mixture Property	Test Method	Requirement
Target laboratory-molded density, % (TGC)	Tex-207-F	96.5 ¹
Design gyrations (Ndesign for SGC)	Tex-241-F	50 ²
Indirect tensile strength (dry), psi	Tex-226-F	85–200 ³
Boil test ⁴	Tex-530-C	—

1. Increase to 97.0% or 97.5% at the Contractor's discretion or when shown on the plans or specification.
2. Adjust within a range of 35–100 gyrations when shown on the plans or specification or when mutually agreed between the Engineer and Contractor.
3. The Engineer may allow the IDT strength to exceed 200 psi if the corresponding Hamburg Wheel rut depth is greater than 3.0 mm and less than 12.5 mm.
4. Used to establish baseline for comparison to production results. May be waived when approved.

Table 10
Hamburg Wheel Test Requirements

High-Temperature Binder Grade	Test Method	Minimum # of Passes @ 12.5 mm ¹ Rut Depth, Tested @ 50°C
PG 64 or lower		10,000 ²
PG 70	Tex-242-F	15,000 ³
PG 76 or higher		20,000

1. When the rut depth at the required minimum number of passes is less than 3 mm, the Engineer may require the Contractor to increase the target laboratory-molded density (TGC) by 0.5% to no more than 97.5% or lower the Ndesign level (SGC) to no less than 35 gyrations.
2. May be decreased to no less than 5,000 passes when shown on the plans.
3. May be decreased to no less than 10,000 passes when shown on the plans.

4.3.2.

Job-Mix Formula Approval. The job-mix formula (JMF) is the combined aggregate gradation, target laboratory-molded density (or Ndesign level), and target asphalt percentage used to establish target values for hot-mix production. JMF1 is the original laboratory mixture design used to produce the trial batch.

When WMA is used, JMF1 may be designed and submitted to the Engineer without including the WMA additive. When WMA is used, document the additive or process used and recommended rate on the JMF1 submittal. Furnish a mix design report (JMF1) with representative samples of all component materials and request approval to produce the trial batch. Provide approximately 10,000 g of the design mixture and request that the Department perform the Hamburg Wheel test if opting to have the Department perform the test. The Engineer will verify JMF1 based on plant-produced mixture from the trial batch unless otherwise determined. The Engineer may accept an existing mixture design previously used on a department project and may waive the trial batch to verify JMF1. Provide split samples of the mixtures and blank samples used to determine the ignition oven correction factors. The Engineer will determine the aggregate and asphalt correction factors from the ignition oven used for production testing in accordance with [Tex-236-F](#).

The Engineer will use a TGC calibrated in accordance with [Tex-914-K](#) in molding production samples. Provide an SGC at the Engineer's field laboratory for use in molding production samples if the SGC is used to design the mix.

The Engineer may perform [Tex-530-C](#) and retain the tested sample for comparison purposes during production. The Engineer may waive the requirement for the boil test.

4.3.3.

JMF Adjustments. If JMF adjustments are necessary to achieve the specified requirements, the adjusted JMF must:

- be provided to the Engineer in writing before the start of a new lot.
- be numbered in sequence to the previous JMF.
- meet the mixture requirements in Table 4 and Table 5.
- meet the master gradation limits shown in Table 8; and
- be within the operational tolerances of the current JMF listed in Table 11.

The Engineer may adjust the asphalt binder content to maintain desirable laboratory density near the optimum value while achieving other mix requirements.

Table 11
Operational Tolerances

Description	Test Method	Allowable Difference Between Trial Batch and JMF1 Target	Allowable Difference from Current JMF Target
Individual % retained for #8 sieve and larger	Tex-200-F	Must be within master grading limits in Table 8	$\pm 5.0^{1,2}$
Individual % retained for sieves smaller than #8 and larger than #200	Tex-236-F		$\pm 3.0^{1,2}$
% passing the #200 sieve			$\pm 2.0^{1,2}$
Asphalt binder content, %	Tex-236-F	± 0.5	$\pm 0.3^2$
Laboratory-molded density, %	Tex-207-F	± 1.0	± 1.0
VMA, %, min	Tex-204-F	Note 3	Note 3

1. When within these tolerances, mixture production gradations may fall outside the master grading limits; however, the % passing the #200 will be considered out of tolerance when outside the master grading limits.
2. Only applies to mixture produced for Lot 1 and higher.
3. Mixture is required to meet Table 8 requirements.

4.4.

Production Operations. Perform a new trial batch when the plant or plant location is changed. Take corrective action and receive approval to proceed after any production suspension for noncompliance to the specification. Submit a new mix design and perform a new trial batch when the asphalt binder content of:

- any RAP stockpile used in the mix is more than 0.5% higher than the value shown on the mixture design report; or
- RAS stockpile used in the mix is more than 2.0% higher than the value shown on the mixture design report.

4.4.1.

Storage and Heating of Materials. Do not heat the asphalt binder above the temperatures specified in Item 300, "Asphalts, Oils, and Emulsions," or outside the manufacturer's recommended values. Provide the Engineer with daily records of asphalt binder and hot-mix asphalt discharge temperatures (in legible and

discernible increments) in accordance with Item 320, "Equipment for Asphalt Concrete Pavement," unless otherwise directed. Do not store mixture for a period long enough to affect the quality of the mixture, nor in any case longer than 12 hr. unless otherwise approved.

4.4.2. **Mixing and Discharge of Materials.** Notify the Engineer of the target discharge temperature and produce the mixture within 25°F of the target. Monitor the temperature of the material in the truck before shipping to ensure that it does not exceed 350°F (or 275°F for WMA) and is not lower than 215°F. The Department will not pay for or allow placement of any mixture produced above 350°F.

Produce WMA within the target discharge temperature range of 215°F and 275°F when WMA is required. Take corrective action any time the discharge temperature of the WMA exceeds the target discharge range. The Engineer may suspend production operations if the Contractor's corrective action is not successful at controlling the production temperature within the target discharge range. Note that when WMA is produced, it may be necessary to adjust burners to ensure complete combustion such that no burner fuel residue remains in the mixture.

Control the mixing time and temperature so that substantially all moisture is removed from the mixture before discharging from the plant. The Engineer may determine the moisture content by oven-drying in accordance with [Tex-212-F](#), Part II, and verify that the mixture contains no more than 0.2% of moisture by weight. The Engineer will obtain the sample immediately after discharging the mixture into the truck and will perform the test promptly.

4.5. **Hauling Operations.** Clean all truck beds before use to ensure that mixture is not contaminated. Use a release agent shown on the Department's MPL to coat the inside bed of the truck when necessary.

Use equipment for hauling as defined in Section 340.4.6.3.2., "Hauling Equipment." Use other hauling equipment only when allowed.

4.6. **Placement Operations.** Collect haul tickets from each load of mixture delivered to the project and provide the Department's copy to the Engineer approximately every hour, or as directed. Use a hand-held thermal camera or infrared thermometer to measure and record the internal temperature of the mixture as discharged from the truck or Material Transfer Device (MTD) before or as the mix enters the paver and an approximate station number or GPS coordinates on each ticket unless otherwise directed. Calculate the daily yield and cumulative yield for the specified lift and provide to the Engineer at the end of paving operations for each day unless otherwise directed. The Engineer may suspend production if the Contractor fails to produce and provide haul tickets and yield calculations by the end of paving operations for each day.

Prepare the surface by removing raised pavement markers and objectionable material such as moisture, dirt, sand, leaves, and other loose impediments from the surface before placing mixture. Remove vegetation from pavement edges. Place the mixture to meet the typical section requirements and produce a smooth, finished surface with a uniform appearance and texture. Offset longitudinal joints of successive courses of hot mix by at least 6 in. Place mixture so that longitudinal joints on the surface course coincide with lane lines, or as directed. Ensure that all finished surfaces will drain properly.

Place the mixture at the rate or thickness shown on the plans. The Engineer will use the guidelines in Table 12 to determine the compacted lift thickness of each layer when multiple lifts are required. The thickness determined is based on the rate of 110 lb./sq. yd. for each inch of pavement unless otherwise shown on the plans.

Table 12
Compacted Lift Thickness and Required Core Height

Mixture Type	Compacted Lift Thickness Guidelines		Minimum Untrimmed Core Height (in.) Eligible for Testing
	Minimum (in.)	Maximum (in.)	
A	3.00	6.00	2.00
B	2.50	5.00	1.75
C	2.00	4.00	1.50
D	1.50	3.00	1.25
F	1.25	2.50	1.25

4.6.1. **Weather Conditions.** Place mixture when the roadway surface temperature is at or above 60°F unless otherwise approved. Measure the roadway surface temperature with a hand-held thermal camera or infrared thermometer. The Engineer may allow mixture placement to begin before the roadway surface reaches the required temperature if conditions are such that the roadway surface will reach the required temperature within 2 hr. of beginning placement operations. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. The Engineer may restrict the Contractor from paving if the ambient temperature is likely to drop below 32°F within 12 hr. of paving.

4.6.2. **Tack Coat.** Clean the surface before placing the tack coat. The Engineer will set the rate between 0.04 and 0.10 gal. of residual asphalt per square yard of surface area. Apply a uniform tack coat at the specified rate unless otherwise directed. Apply the tack coat in a uniform manner to avoid streaks and other irregular patterns. Apply a thin, uniform tack coat to all contact surfaces of curbs, structures, and all joints. Allow adequate time for emulsion to break completely before placing any material. Prevent splattering of tack coat when placed adjacent to curb, gutter, and structures. Roll the tack coat with a pneumatic-tire roller to remove streaks and other irregular patterns when directed.

4.6.3. *Lay-Down Operations.*

4.6.3.1. **Windrow Operations.** Operate windrow pickup equipment so that when hot mix is placed in windrows substantially all the mixture deposited on the roadbed is picked up and loaded into thepaver.

4.6.3.2. **Hauling Equipment.** Use belly dumps, live bottom, or end dump trucks to haul and transfer mixture; however, with exception of paving miscellaneous areas, end dump trucks are only allowed when used in conjunction with an MTD with remixing capability unless otherwise allowed.

4.6.3.3. **Screeed Heaters.** Turn off screed heaters, to prevent overheating of the mat, if the paver stops for more than 5 min.

4.7. **Compaction.** Compact the pavement uniformly to contain between 3.8% and 8.5% in-place airvoids.

Furnish the type, size, and number of rollers required for compaction as approved. Use a pneumatic-tire roller to seal the surface unless excessive pickup of fines occurs. Use additional rollers as required to remove any roller marks. Use only water or an approved release agent on rollers, tamps, and other compaction equipment unless otherwise directed.

Use the control strip method shown in [Tex-207-F](#), Part IV, on the first day of production to establish the rolling pattern that will produce the desired in-place air voids unless otherwise directed.

Use tamps to thoroughly compact the edges of the pavement along curbs, headers, and similar structures and in locations that will not allow thorough compaction with rollers. The Engineer may require rolling with a trench roller on widened areas, in trenches, and in other limited areas.

Complete all compaction operations before the pavement temperature drops below 160°F unless otherwise allowed. The Engineer may allow compaction with a light finish roller operated in static mode for pavement temperatures below 160°F.

Allow the compacted pavement to cool to 160°F or lower before opening to traffic unless otherwise directed. Sprinkle the finished mat with water or limewater, when directed, to expedite opening the roadway to traffic.

4.8. Production Acceptance.

4.8.1. **Production Lot.** Each day of production is defined as a production lot. Lots will be sequentially numbered and correspond to each new day of production. Note that lots are not subdivided into sublots for this specification.

4.8.2. Production Sampling.

4.8.2.1. **Mixture Sampling.** The Engineer may obtain mixture samples in accordance with [Tex-222-F](#) at any time during production.

4.8.2.2. **Asphalt Binder Sampling.** The Engineer may obtain or require the Contractor to obtain 1 qt. samples of the asphalt binder at any time during production from a port located immediately upstream from the mixing drum or pug mill in accordance with [Tex-500-C](#), Part II. The Engineer may test any of the asphalt binder samples to verify compliance with Item 300, "Asphalts, Oils, and Emulsions."

4.8.3. **Production Testing.** The Engineer will test at the frequency listed in the Department's *Guide Schedule of Sampling and Testing* and this specification. The Engineer may suspend production if production tests do not meet specifications or are not within operational tolerances listed in Table 11. Take immediate corrective action if the Engineer's laboratory-molded density on any sample is less than 95.0% or greater than 98.0%, to bring the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

The Engineer may use alternate methods for determining the asphalt binder content and aggregate gradation if the aggregate mineralogy is such that [Tex-236-F](#) does not yield reliable results. Use the applicable test procedure if an alternate test method is selected.

Table 13
Production and Placement Testing

Description	Test Method
Individual % retained for #8 sieve and larger	Tex-200-F
Individual % retained for sieves smaller than #8 and larger than #200	or Tex-236-F
% passing the #200 sieve	
Laboratory-molded density	
Laboratory-molded bulk specific gravity	Tex-207-F
In-Place air voids	
VMA	Tex-204-F
Moisture content	Tex-212-F , Part II
Theoretical maximum specific (Rice) gravity	Tex-227-F
Asphalt binder content	Tex-236-F
Hamburg Wheel test	Tex-242-F
Recycled Asphalt Shingles (RAS) ¹	Tex-217-F , Part III
Asphalt binder sampling and testing	Tex-500-C
Tack coat sampling and testing	Tex-500-C , Part III
Boil test	Tex-530-C

1. Testing performed by the Construction Division or designated laboratory.

4.8.3.1. **Voids in Mineral Aggregates (VMA).** The Engineer may determine the VMA for any production lot. Take immediate corrective action if the VMA value for any lot is less than the minimum VMA requirement for production listed in Table 8. Suspend production and shipment of the mixture if the Engineer's VMA result is more than 0.5% below the minimum VMA requirement for production listed in Table 8. In addition to suspending production, the Engineer may require removal and replacement or may allow the lot to be left in place without payment.

4.8.3.2. **Hamburg Wheel Test.** The Engineer may perform a Hamburg Wheel test at any time during production, including when the boil test indicates a change in quality from the materials submitted for JMF1. In addition to testing production samples, the Engineer may obtain cores and perform Hamburg Wheel tests on any areas of the roadway where rutting is observed. Suspend production until further Hamburg Wheel tests meet the specified values when the production or core samples fail the Hamburg Wheel test criteria in Table 10. Core samples, if taken, will be obtained from the center of the finished mat or other areas excluding the vehicle wheel paths. The Engineer may require up to the entire lot of any mixture failing the Hamburg Wheel test to be removed and replaced at the Contractor's expense.

If the Department's or Department-approved laboratory's Hamburg Wheel test results in a "remove and replace" condition, the Contractor may request that the Department confirm the results by re-testing the failing material. The Construction Division will perform the Hamburg Wheel tests and determine the final disposition of the material in question based on the Department's test results.

4.8.4. **Individual Loads of Hot-Mix.** The Engineer can reject individual truckloads of hot mix. When a load of hot mix is rejected for reasons other than temperature, contamination, or excessive uncoated particles, the Contractor may request that the rejected load be tested. Make this request within 4 hr. of rejection. The Engineer will sample and test the mixture. If test results are within the operational tolerances shown in Table 11, payment will be made for the load. If test results are not within operational tolerances, no payment will be made for the load.

4.9. Placement Acceptance.

4.9.1. **Placement Lot.** A placement lot is defined as the area placed during a production lot (one day's production). Placement lot numbers will correspond with production lot numbers.

4.9.2. **Miscellaneous Areas.** Miscellaneous areas include areas that typically involve significant handwork or discontinuous paving operations, such as temporary detours, driveways, mailbox turnouts, crossovers, gores, spot level-up areas, and other similar areas. Miscellaneous areas also include level-ups and thin overlays when the layer thickness specified on the plans is less than the minimum untrimmed core height eligible for testing shown in Table 12. The specified layer thickness is based on the rate of 110 lb./sq. yd. for each inch of pavement unless another rate is shown on the plans. Compact miscellaneous areas in accordance with Section 340.4.7., "Compaction." Miscellaneous areas are not subject to in-place air void determination except for temporary detours when shown on the plans.

4.9.3. **Placement Sampling.** Provide the equipment and means to obtain and trim roadway cores on site. On site is defined as in close proximity to where the cores are taken. Obtain the cores within one working day of the time the placement lot is completed unless otherwise approved. Obtain two 6-in. diameter cores side-by-side at each location selected by the Engineer for in-place air void determination unless otherwise shown on the plans. For Type D and Type F mixtures, 4-in. diameter cores are allowed. Mark the cores for identification, measure and record the untrimmed core height, and provide the information to the Engineer. The Engineer will witness the coring operation and measurement of the core thickness.

Visually inspect each core and verify that the current paving layer is bonded to the underlying layer. Take corrective action if an adequate bond does not exist between the current and underlying layer to ensure that an adequate bond will be achieved during subsequent placement operations.

Trim the cores immediately after obtaining the cores from the roadway in accordance with [Tex-207-F](#) if the core heights meet the minimum untrimmed value listed in Table 12. Trim the cores on site in the presence of the Engineer. Use a permanent marker or paint pen to record the date and lot number on each core as well as the designation as Core A or B. The Engineer may require additional information to be marked on the core and may choose to sign or initial the core. The Engineer will take custody of the cores immediately after they are trimmed and will retain custody of the cores until the Department's testing is completed. Before turning the trimmed cores over to the Engineer, the Contractor may wrap the trimmed cores or secure them in a manner that will reduce the risk of possible damage occurring during transport by the Engineer. After testing, the Engineer will return the cores to the Contractor.

The Engineer may have the cores transported back to the Department's laboratory at the HMA plant via the Contractor's haul truck or other designated vehicle. In such cases where the cores will be out of the Engineer's possession during transport, the Engineer will use Department-provided security bags and the Roadway Core Custody protocol located at <http://www.txdot.gov/business/specifications.htm> to provide a secure means and process that protects the integrity of the cores during transport.

Instead of the Contractor trimming the cores on site immediately after coring, the Engineer and the Contractor may mutually agree to have the trimming operations performed at an alternate location such as a field laboratory or other similar location. In such cases, the Engineer will take possession of the cores immediately after they are obtained from the roadway and will retain custody of the cores until testing is completed. Either the Department or Contractor representative may perform trimming of the cores. The Engineer will witness all trimming operations in cases where the Contractor representative performs the trimming operation.

Dry the core holes and tack the sides and bottom immediately after obtaining the cores. Fill the hole with the same type of mixture and properly compact the mixture. Repair core holes with other methods when approved.

4.9.4. **Placement Testing.** The Engineer may measure in-place air voids at any time during the project to verify specification compliance.

4.9.4.1. **In-Place Air Voids.** The Engineer will measure in-place air voids in accordance with [Tex-207-F](#) and [Tex-227-F](#). Cores not meeting the height requirements in Table 12 will not be tested. Before drying to a constant weight, cores may be pre-dried using a Corelok or similar vacuum device to remove excess moisture. The Engineer will use the corresponding theoretical maximum specific gravity to determine the air void content of each core. The Engineer will use the average air void content of the 2 cores to determine the in-place air voids at the selected location.

The Engineer will use the vacuum method to seal the core if required by [Tex-207-F](#). The Engineer will use the test results from the unsealed core if the sealed core yields a higher specific gravity than the unsealed core. After determining the in-place air void content, the Engineer will return the cores and provide test results to the Contractor.

Take immediate corrective action when the in-place air voids exceed the range of 3.8% and 8.5% to bring the operation within these tolerances. The Engineer may suspend operations or require removal and replacement if the in-place air voids are less than 2.7% or greater than 9.9%. The Engineer will allow paving to resume when the proposed corrective action is likely to yield between 3.8% and 8.5% in-place air voids. Areas defined in Section 340.9.2., "Miscellaneous Areas," are not subject to in-place air void determination.

4.9.5. **Irregularities.** Identify and correct irregularities including segregation, rutting, raveling, flushing, fat spots, mat slippage, irregular color, irregular texture, roller marks, tears, gouges, streaks, uncoated aggregate particles, or broken aggregate particles. The Engineer may also identify irregularities, and in such cases, the Engineer will promptly notify the Contractor. If the Engineer determines that the irregularity will adversely affect pavement performance, the Engineer may require the Contractor to remove and replace (at the Contractor's expense) areas of the pavement that contain irregularities and areas where the mixture does not bond to the existing pavement. If irregularities are detected, the Engineer may require the Contractor to immediately suspend operations or may allow the Contractor to continue operations for no more than one day while the Contractor is taking appropriate corrective action.

4.9.6. **Ride Quality.** Use Surface Test Type A to evaluate ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

5. MEASUREMENT

Hot mix will be measured by the ton of composite hot mix, which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520, "Weighing and Measuring Equipment."

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under Article 340.5., "Measurement," will be paid for at the unit bid price for "Dense Graded Hot-Mix Asphalt (SQ)" of the mixture type, SAC, and binder specified. These prices are full compensation for surface preparation, materials including tack coat, placement, equipment, labor, tools, and incidentals.

Trial batches will not be paid for unless they are included in pavement work approved by the Department.

Payment adjustment for ride quality, if applicable, will be determined in accordance with Item 585, "Ride Quality for Pavement Surfaces."

Dense-Graded Hot-Mix Asphalt

1. DESCRIPTION

Construct a hot-mix asphalt (HMA) pavement layer composed of a compacted, dense-graded mixture of aggregate and asphalt binder mixed hot in a mixing plant. Payment adjustments will apply to HMA placed under this specification unless the HMA is deemed exempt in accordance with Section 341.4.9.4., "Exempt Production."

2. MATERIALS

Furnish uncontaminated materials of uniform quality that meet the requirements of the plans and specifications.

Notify the Engineer of all material sources and before changing any material source or formulation. The Engineer will verify that the specification requirements are met when the Contractor makes a source or formulation change, and may require a new laboratory mixture design, trial batch, or both. The Engineer may sample and test project materials at any time during the project to verify specification compliance in accordance with Item 6, "Control of Materials."

2.1. **Aggregate.** Furnish aggregates from sources that conform to the requirements shown in Table 1 and as specified in this Section. Aggregate requirements in this Section, including those shown in Table 1, may be modified, or eliminated when shown on the plans. Additional aggregate requirements may be specified when shown on the plans. Provide aggregate stockpiles that meet the definitions in this Section for coarse, intermediate, or fine aggregate. Aggregate from reclaimed asphalt pavement (RAP) is not required to meet Table 1 requirements unless otherwise shown on the plans. Supply aggregates that meet the definitions in [Tex-100-E](#) for crushed gravel or crushed stone. The Engineer will designate the plant or the quarry as the sampling location. Provide samples from materials produced for the project. The Engineer will establish the Surface Aggregate Classification (SAC) and perform Los Angeles abrasion, magnesium sulfate soundness, and Micro-Deval tests. Perform all other aggregate quality tests listed in Table 1. Document all test results on the mixture design report. The Engineer may perform tests on independent or split samples to verify Contractor test results. Stockpile aggregates for each source and type separately. Determine aggregate gradations for mixture design and production testing based on the washed sieve analysis given in [Tex-200-F](#), Part II.

2.1.1. **Coarse Aggregate.** Coarse aggregate stockpiles must have no more than 20% material passing the No. 8 sieve. Aggregates from sources listed in the Department's *Bituminous Rated Source Quality Catalog* (BRSQC) are preapproved for use. Use only the rated values for hot mix listed in the BRSQC. Rated values for surface treatment (ST) do not apply to coarse aggregate sources used in hot-mix asphalt.

For sources not listed on the Department's BRSQC:

- build an individual stockpile for each material.
- request the Department test the stockpile for specification compliance; and
- once approved, do not add material to the stockpile unless otherwise approved.

Provide aggregate from non-listed sources only when tested by the Engineer and approved before use. Allow 30 calendar days for the Engineer to sample, test, and report results for non-listed sources.

Provide coarse aggregate with at least the minimum SAC shown on the plans. SAC requirements only apply to aggregates used on the surface of travel lanes. SAC requirements apply to aggregates used on surfaces.

other than travel lanes when shown on the plans. The SAC for sources on the Department's *Aggregate Quality Monitoring Program* (AQMP) ([Tex-499-A](#)) is listed in the BRSQC.

2.1.1.1. **Blending Class, A and Class B Aggregates.** Class B aggregate meeting all other requirements in Table 1 may be blended with a Class A aggregate to meet requirements for Class A materials. Ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source when blending Class, A and B aggregates to meet a Class A requirement. Blend by volume if the bulk specific gravities of the Class A and B aggregates differ by more than 0.300. Coarse aggregate from RAP and Recycled Asphalt Shingles (RAS) will be considered as Class B aggregate for blending purposes.

The Engineer may perform tests at any time during production, when the Contractor blends Class A and B aggregates to meet a Class A requirement, to ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source. The Engineer will use the Department's mix design template, when electing to verify conformance, to calculate the percent of Class A aggregate retained on the No. 4 sieve by inputting the bin percentages shown from readouts in the control room at the time of production and stockpile gradations measured at the time of production. The Engineer may determine the gradations based on either washed or dry sieve analysis from samples obtained from individual aggregate cold feed bins or aggregate stockpiles. The Engineer may perform spot checks using the gradations supplied by the Contractor on the mixture design report as an input for the template; however, a failing spot check will require confirmation with a stockpile gradation determined by the Engineer.

2.1.1.2. **Micro-Deval Abrasion.** The Engineer will perform a minimum of one Micro-Deval abrasion test in accordance with [Tex-461-A](#) for each coarse aggregate source used in the mixture design that has a Rated Source Soundness Magnesium (RSSM) loss value greater than 15 as listed in the BRSQC. The Engineer will perform testing before the start of production and may perform additional testing at any time during production. The Engineer may obtain the coarse aggregate samples from each coarse aggregate source or may require the Contractor to obtain the samples. The Engineer may waive all Micro-Deval testing based on a satisfactory test history of the same aggregate source.

The Engineer will estimate the magnesium sulfate soundness loss for each coarse aggregate source, when tested, using the following formula:

$$Mg_{est} = (RSSM)(MD_{act}/RSMD)$$

where:

Mg_{est} = magnesium sulfate soundness loss

MD_{act} = actual Micro-Deval percent loss

$RSMD$ = Rated Source Micro-Deval

When the estimated magnesium sulfate soundness loss is greater than the maximum magnesium sulfate soundness loss specified, the coarse aggregate source will not be allowed for use unless otherwise approved. The Engineer will consult the Geotechnical, Soils, and Aggregates Branch of the Construction Division, and additional testing may be required before granting approval.

2.1.2. **Intermediate Aggregate.** Aggregates not meeting the definition of coarse or fine aggregate will be defined as intermediate aggregate. Supply intermediate aggregates, when used that are free from organic impurities. The Engineer may test the intermediate aggregate in accordance with [Tex-408-A](#) to verify the material is free from organic impurities. Supply intermediate aggregate from coarse aggregate sources, when used that meet the requirements shown in Table 1 unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve, and verify that it meets the requirements in Table 1 for crushed face count ([Tex-460-A](#)) and flat and elongated particles ([Tex-280-F](#)).

2.1.3. **Fine Aggregate.** Fine aggregates consist of manufactured sands, screenings, and field sands. Fine aggregate stockpiles must meet the gradation requirements in Table 2. Supply fine aggregates that are free from organic impurities. The Engineer may test the fine aggregate in accordance with [Tex-408-A](#) to verify the

material is free from organic impurities. No more than 15% of the total aggregate may be field sand or other uncrushed fine aggregate. Use fine aggregate, with the exception of field sand, from coarse aggregate sources that meet the requirements shown in Table 1 unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve and verify that it meets the requirements in Table 1 for crushed face count ([Tex-460-A](#)) and flat and elongated particles ([Tex-280-F](#)).

Table 1
Aggregate Quality Requirements

Property	Test Method	Requirement
Coarse Aggregate		
SAC	Tex-499-A (AQMP)	As shown on the plans
Deleterious material, %, Max	Tex-217-F , Part I	1.5
Decantation, %, Max	Tex-217-F , Part II	1.5
Micro-Deval abrasion, %	Tex-461-A	Note 1
Los Angeles abrasion, %, Max	Tex-410-A	40
Magnesium sulfate soundness, 5 cycles, %, Max	Tex-411-A	30
Crushed face count, ² %, Min	Tex-460-A , Part I	85
Flat and elongated particles @ 5:1, %, Max	Tex-280-F	10
Fine Aggregate		
Linear shrinkage, %, Max	Tex-107-E	3
Combined Aggregate³		
Sand equivalent, %, Min	Tex-203-F	45

1. Used to estimate the magnesium sulfate soundness loss in accordance with Section 341.2.1.1.2., "Micro-Deval Abrasion."
2. Only applies to crushed gravel.
3. Aggregates, without mineral filler, RAP, RAS, or additives, combined as used in the job-mix formula (JMF).

Table 2
Gradation Requirements for Fine Aggregate

Sieve Size	% Passing by Weight or Volume
3/8"	100
#8	70–100
#200	0–30

2.2. **Mineral Filler.** Mineral filler consists of finely divided mineral matter such as agricultural lime, crusher fines, hydrated lime, or fly ash. Mineral filler is allowed unless otherwise shown on the plans. Use no more than 2% hydrated lime or fly ash unless otherwise shown on the plans. Use no more than 1% hydrated lime if a substitute binder is used unless otherwise shown on the plans or allowed. Test all mineral fillers except hydrated lime and fly ash in accordance with [Tex-107-E](#) to ensure specification compliance. The plans may require or disallow specific mineral fillers. Provide mineral filler, when used, that:

- is sufficiently dry, free-flowing, and free from clumps and foreign matter as determined by the Engineer.
- does not exceed 3% linear shrinkage when tested in accordance with [Tex-107-E](#); and
- meets the gradation requirements in Table 3.

Table 3
Gradation Requirements for Mineral Filler

Sieve Size	% Passing by Weight or Volume
#8	100
#200	55–100

2.3. **Baghouse Fines.** Fines collected by the baghouse or other dust-collecting equipment may be reintroduced into the mixing drum.

2.4. **Asphalt Binder.** Furnish the type and grade of performance-graded (PG) asphalt specified on the plans.

2.5. **Tack Coat.** Furnish CSS-1H, SS-1H, or a PG binder with a minimum high-temperature grade of PG 58 for tack coat binder in accordance with Item 300, "Asphalts, Oils, and Emulsions." Specialized or preferred tack

coat materials may be allowed or required when shown on the plans. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use.

The Engineer will obtain at least one sample of the tack coat binder per project in accordance with [Tex-500-C](#), Part III, and test it to verify compliance with Item 300, "Asphalts, Oils, and Emulsions." The Engineer will obtain the sample from the asphalt distributor immediately before use.

2.6.

Additives. Use the type and rate of additive specified when shown on the plans. Additives that facilitate mixing, compaction, or improve the quality of the mixture are allowed when approved. Provide the Engineer with documentation such as the bill of lading showing the quantity of additives used in the project unless otherwise directed.

2.6.1.

Lime and Liquid Antistripping Agent. When lime or a liquid antistripping agent is used, add in accordance with Item 301, "Asphalt Antistripping Agents." Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum.

2.6.2.

Warm Mix Asphalt (WMA). Warm Mix Asphalt (WMA) is defined as HMA that is produced within a target temperature discharge range of 215°F and 275°F using approved WMA additives or processes from the Department's MPL.

WMA is allowed for use on all projects and is required when shown on the plans. When WMA is required, the maximum placement or target discharge temperature for WMA will be set at a value below 275°F.

Department-approved WMA additives or processes may be used to facilitate mixing and compaction of HMA produced at target discharge temperatures above 275°F; however, such mixtures will not be defined as WMA.

2.7.

Recycled Materials. Use of RAP and RAS is permitted unless otherwise shown on the plans. Do not exceed the maximum allowable percentages of RAP and RAS shown in Table 4. The allowable percentages shown in Table 4 may be decreased or increased when shown on the plans. Determine asphalt binder content and gradation of the RAP and RAS stockpiles for mixture design purposes in accordance with [Tex-236-F](#). The Engineer may verify the asphalt binder content of the stockpiles at any time during production. Perform other tests on RAP and RAS when shown on the plans. Asphalt binder from RAP and RAS is designated as recycled asphalt binder. Calculate and ensure that the ratio of the recycled asphalt binder to total binder does not exceed the percentages shown in Table 5 during mixture design and HMA production when RAP or RAS is used. Use a separate cold feed bin for each stockpile of RAP and RAS during HMA production.

Surface, intermediate, and base mixes referenced in Tables 4 and 5 are defined as follows:

- **Surface.** The final HMA lift placed at or near the top of the pavement structure.
- **Intermediate.** Mixtures placed below an HMA surface mix and less than or equal to 8.0 in. from the riding surface; and
- **Base.** Mixtures placed greater than 8.0 in. from the riding surface.

2.7.1.

RAP. RAP is salvaged, milled, pulverized, broken, or crushed asphalt pavement. Crush or break RAP so that 100% of the particles pass the 2 in. sieve. Fractionated RAP is defined as 2 or more RAP stockpiles, divided into coarse and fine fractions.

Use of Contractor-owned RAP including HMA plant waste is permitted unless otherwise shown on the plans. Department-owned RAP stockpiles are available for the Contractor's use when the stockpile locations are shown on the plans. If Department-owned RAP is available for the Contractor's use, the Contractor may use Contractor-owned fractionated RAP and replace it with an equal quantity of Department-owned RAP. This allowance does not apply to a Contractor using unfractionated RAP. Department-owned RAP generated through required work on the Contract is available for the Contractor's use when shown on the plans. Perform any necessary tests to ensure Contractor- or Department-owned RAP is appropriate for use. The Department will not perform any tests or assume any liability for the quality of the Department-owned RAP.

unless otherwise shown on the plans. The Contractor will retain ownership of RAP generated on the project when shown on the plans.

The coarse RAP stockpile will contain only material retained by processing over a 3/8-in. or 1/2-in. screen unless otherwise approved. The fine RAP stockpile will contain only material passing the 3/8-in. or 1/2-in. screen unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 3/8-in. or 1/2-in. screen to fractionate the RAP. The maximum percentages of fractionated RAP may be comprised of coarse or fine fractionated RAP or the combination of both coarse and fine fractionated RAP.

Do not use Department- or Contractor-owned RAP contaminated with dirt or other objectionable materials. Do not use Department- or Contractor-owned RAP if the decantation value exceeds 5% and the plasticity index is greater than 8. Test the stockpiled RAP for decantation in accordance with [Tex-406-A](#), Part I. Determine the plasticity index in accordance with [Tex-106-E](#) if the decantation value exceeds 5%. The decantation and plasticity index requirements do not apply to RAP samples with asphalt removed by extraction or ignition.

Do not intermingle Contractor-owned RAP stockpiles with Department-owned RAP stockpiles. Remove unused Contractor-owned RAP material from the project site upon completion of the project. Return unused Department-owned RAP to the designated stockpile location.

Table 4
Maximum Allowable Amounts of RAP¹

Maximum Allowable Fractionated RAP ² (%)			Maximum Allowable Unfractionated RAP ³ (%)		
Surface	Intermediate	Base	Surface	Intermediate	Base
20.0	30.0	40.0	10.0	10.0	10.0

1. Must also meet the recycled binder to total binder ratio shown in Table 5.
2. Up to 5% RAS may be used separately or as a replacement for fractionated RAP.
3. Unfractionated RAP may not be combined with fractionated RAP or RAS.

2.7.2. **RAS.** Use of post-manufactured RAS or post-consumer RAS (tear-offs) is permitted unless otherwise shown on the plans. Up to 5% RAS may be used separately or as a replacement for fractionated RAP in accordance with Table 4 and Table 5. RAS is defined as processed asphalt shingle material from manufacturing of asphalt roofing shingles or from re-roofing residential structures. Post-manufactured RAS is processed manufacturer's shingle scrap by-product. Post-consumer RAS is processed shingle scrap removed from residential structures. Comply with all regulatory requirements stipulated for RAS by the TCEQ. RAS may be used separately or in conjunction with RAP.

Process the RAS by ambient grinding or granulating such that 100% of the particles pass the 3/8 in. sieve when tested in accordance with [Tex-200-F](#), Part I. Perform a sieve analysis on processed RAS material before extraction (or ignition) of the asphalt binder.

Add sand meeting the requirements of Table 1 and Table 2 or fine RAP to RAS stockpiles if needed to keep the processed material workable. Any stockpile that contains RAS will be considered a RAS stockpile and be limited to no more than 5.0% of the HMA mixture in accordance with Table 4.

Certify compliance of the RAS with [DMS-11000](#), "Evaluating and Using Nonhazardous Recyclable Materials Guidelines." Treat RAS as an established nonhazardous recyclable material if it has not come into contact with any hazardous materials. Use RAS from shingle sources on the Department's MPL. Remove substantially all materials before use that are not part of the shingle, such as wood, paper, metal, plastic, and felt paper. Determine the deleterious content of RAS material for mixture design purposes in accordance with [Tex-217-F](#), Part III. Do not use RAS if deleterious materials are more than 0.5% of the stockpiled RAS unless otherwise approved. Submit a sample for approval before submitting the mixture design. The Department will perform the testing for deleterious material of RAS to determine specification compliance.

2.8. **Substitute Binders.** Unless otherwise shown on the plans, the Contractor may use a substitute PG binder listed in Table 5 instead of the PG binder originally specified, if the substitute PG binder and mixture made with the substitute PG binder meet the following:

- the substitute binder meets the specification requirements for the substitute binder grade in accordance with Section 300.2.10., "Performance-Graded Binders;" and
- the mixture has less than 10.0 mm of rutting on the Hamburg Wheel test ([Tex-242-F](#)) after the number of passes required for the originally specified binder. Use of substitute PG binders may only be allowed at the discretion of the Engineer if the Hamburg Wheel test results are between 10.0 mm and 12.5 mm.

Table 5
Allowable Substitute PG Binders and Maximum Recycled Binder Ratios

Originally Specified PG Binder	Allowable Substitute PG Binder	Maximum Ratio of Recycled Binder ¹ to Total Binder (%)		
		Surface	Intermediate	Base
HMA				
76-22 ²	70-22 or 64-22	20.0	20.0	20.0
	70-28 or 64-28	30.0	35.0	40.0
70-22 ²	64-22	20.0	20.0	20.0
	64-28 or 58-28	30.0	35.0	40.0
64-22 ²	58-28	30.0	35.0	40.0
76-28 ²	70-28 or 64-28	20.0	20.0	20.0
	64-34	30.0	35.0	40.0
70-28 ²	64-28 or 58-28	20.0	20.0	20.0
	64-34 or 58-34	30.0	35.0	40.0
64-28 ²	58-28	20.0	20.0	20.0
	58-34	30.0	35.0	40.0
WMA³				
76-22 ²	70-22 or 64-22	30.0	35.0	40.0
70-22 ²	64-22 or 58-28	30.0	35.0	40.0
64-22 ⁴	58-28	30.0	35.0	40.0
76-28 ²	70-28 or 64-28	30.0	35.0	40.0
70-28 ²	64-28 or 58-28	30.0	35.0	40.0
64-28 ⁴	58-28	30.0	35.0	40.0

1. Combined recycled binder from RAP and RAS.
2. Use no more than 20.0% recycled binder when using this originally specified PG binder.
3. WMA as defined in Section 341.2.6.2., "Warm Mix Asphalt (WMA)."
4. When used with WMA, this originally specified PG binder is allowed for use at the maximum recycledbinder ratios shown in this table.

3. EQUIPMENT

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement."

4. CONSTRUCTION

Produce, haul, place, and compact the specified paving mixture. In addition to tests required by the specification, Contractors may perform other QC tests as deemed necessary. At any time during the project, the Engineer may perform production and placement tests as deemed necessary in accordance with Item 5, "Control of the Work." Schedule and participate in a mandatory pre-paving meeting with the Engineer on or before the first day of paving unless otherwise shown on the plans.

4.1. **Certification.** Personnel certified by the Department-approved hot-mix asphalt certification program must conduct all mixture designs, sampling, and testing in accordance with Table 6. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning production and when personnel changes are made. Provide a mixture design developed and signed by a Level 2 certified specialist. Provide Level 1A certified specialists at the plant during production operations. Provide Level 1B certified specialists to conduct placement tests.

Table 6
Test Methods, Test Responsibility, and Minimum Certification Levels

Test Description	Test Method	Contractor	Engineer	Level ¹
1. Aggregate and Recycled Material Testing				
Sampling	Tex-221-F	✓	✓	1A
Dry sieve	Tex-200-F , Part I	✓	✓	1A
Washed sieve	Tex-200-F , Part II	✓	✓	1A
Deleterious material	Tex-217-F , Parts I & III	✓	✓	1A
Decantation	Tex-217-F , Part II	✓	✓	1A
Los Angeles abrasion	Tex-410-A		✓	TxDOT
Magnesium sulfate soundness	Tex-411-A		✓	TxDOT
Micro-Deval abrasion	Tex-461-A		✓	2
Crushed face count	Tex-460-A	✓	✓	2
Flat and elongated particles	Tex-280-F	✓	✓	2
Linear shrinkage	Tex-107-E	✓	✓	2
Sand equivalent	Tex-203-F	✓	✓	2
Organic impurities	Tex-408-A	✓	✓	2
2. Asphalt Binder & Tack Coat Sampling				
Asphalt binder sampling	Tex-500-C , Part II	✓	✓	1A/1B
Tack coat sampling	Tex-500-C , Part III	✓	✓	1A/1B
3. Mix Design & Verification				
Design and JMF changes	Tex-204-F	✓	✓	2
Mixing	Tex-205-F	✓	✓	2
Molding (TGC)	Tex-206-F	✓	✓	1A
Molding (SGC)	Tex-241-F	✓	✓	1A
Laboratory-molded density	Tex-207-F	✓	✓	1A
VMA ² (calculation only)	Tex-204-F	✓	✓	2
Rice gravity	Tex-227-F	✓	✓	1A
Ignition oven correction factors ³	Tex-236-F	✓	✓	2
Indirect tensile strength	Tex-226-F	✓	✓	2
Hamburg Wheel test	Tex-242-F	✓	✓	2
Boil test	Tex-530-C	✓	✓	1A
4. Production Testing				
Selecting production random numbers	Tex-225-F , Part I		✓	1A
Mixture sampling	Tex-222-F	✓	✓	1A
Molding (TGC)	Tex-206-F	✓	✓	1A
Molding (SGC)	Tex-241-F	✓	✓	1A
Laboratory-molded density	Tex-207-F	✓	✓	1A
VMA ² (calculation only)	Tex-204-F	✓	✓	1A
Rice gravity	Tex-227-F	✓	✓	1A
Gradation & asphalt binder content ³	Tex-236-F	✓	✓	1A
Control charts	Tex-233-F	✓	✓	1A
Moisture content	Tex-212-F	✓	✓	1A
Hamburg Wheel test	Tex-242-F	✓	✓	2
Micro-Deval abrasion	Tex-461-A		✓	2
Boil test	Tex-530-C	✓	✓	1A
Abson recovery	Tex-211-F		✓	TxDOT
Overlay test	Tex-248-F		✓	TxDOT
Cantabro loss	Tex-245-F		✓	2
5. Placement Testing				
Selecting placement random numbers	Tex-225-F , Part II		✓	1A/1B
Trimming roadway cores	Tex-207-F	✓	✓	1A/1B
In-place air voids	Tex-207-F	✓	✓	1A/1B
Establish rolling pattern	Tex-207-F	✓		1B
Control charts	Tex-233-F	✓	✓	1A
Ride quality measurement	Tex-1001-S	✓	✓	Note 4
Segregation (density profile)	Tex-207-F , Part V	✓	✓	1B
Longitudinal joint density	Tex-207-F , Part VII	✓	✓	1B
Thermal profile	Tex-244-F	✓	✓	1B

1. Level 1A, 1B, and 2 are certification levels provided by the Hot Mix Asphalt Center certification program.
2. Voids in mineral aggregates.
3. Refer to Section 341.4.9.2.3., "Production Testing," for exceptions to using an ignition oven.
4. Profiler and operator are required to be certified at the Texas A&M Transportation Institute facility when Surface Test Type B is specified.

4.2.

Reporting and Responsibilities. Use Department-provided templates to record and calculate all test data, including mixture design, production and placement QC/QA, control charts, thermal profiles, segregation density profiles, and longitudinal joint density. Obtain the current version of the templates at <http://www.txdot.gov/inside-txdot/forms-publications/consultants-contractors/forms/site-manager.html> or from the Engineer. The Engineer and the Contractor will provide any available test results to the other party when requested. The maximum allowable time for the Contractor and Engineer to exchange test data is as given in Table 7 unless otherwise approved. The Engineer and the Contractor will immediately report to the other party any test result that requires suspension of production or placement, a payment adjustment less than 1,000, or that fails to meet the specification requirements. Record and electronically submit all test results and pertinent information on Department-provided templates.

Subsequent sublots placed after test results are available to the Contractor, which require suspension of operations, may be considered unauthorized work. Unauthorized work will be accepted or rejected at the discretion of the Engineer in accordance with Article 5.3., "Conformity with Plans, Specifications, and Special Provisions."

Table 7
Reporting Schedule

Description	Reported By	Reported To	To Be Reported Within
Production Quality Control			
Gradation ¹	Contractor	Engineer	1 working day of completion of the subplot
Asphalt binder content ¹			
Laboratory-molded density ²			
Moisture content ³			
Boil test ³			
Production Quality Assurance			
Gradation ³	Engineer	Contractor	1 working day of completion of the subplot
Asphalt binder content ³			
Laboratory-molded density ¹			
Hamburg Wheel test ²			
Boil test ³			
Binder tests ²			
Placement Quality Control			
In-place air voids ²	Contractor	Engineer	1 working day of completion of the lot
Segregation ¹			
Longitudinal joint density ¹			
Thermal profile ¹			
Placement Quality Assurance			
In-place air voids ¹	Engineer	Contractor	1 working day of receipt of the trimmed cores for in-place air voids ⁴
Segregation ²			
Longitudinal joint density ²			
Thermal profile ²			
Aging ratio ²			
Payment adjustment summary	Engineer	Contractor	2 working days of performing all required tests and receiving Contractor test data

1. These tests are required on every subplot.
2. Optional test. To be reported as soon as results become available.
3. To be performed at the frequency specified on the plans.
4. 2 days are allowed if cores cannot be dried to constant weight within 1 day.

The Engineer will use the Department-provided template to calculate all payment adjustment factors for the lot. Sublot samples may be discarded after the Engineer and Contractor sign off on the payment adjustment summary documentation for the lot.

Use the procedures described in [Tex-233-F](#) to plot the results of all quality control (QC) and quality assurance (QA) testing. Update the control charts as soon as test results for each subplot become available. Make the control charts readily accessible at the field laboratory. The Engineer may suspend production for failure to update control charts.

4.3. **Quality Control Plan (QCP).** Develop and follow the QCP in detail. Obtain approval for changes to the QCP made during the project. The Engineer may suspend operations if the Contractor fails to comply with the QCP.

Submit a written QCP before the mandatory pre-paving meeting. Receive approval of the QCP before beginning production. Include the following items in the QCP:

4.3.1. **Project Personnel.** For project personnel, include:

- a list of individuals responsible for QC with authority to take corrective action.
- current contact information for each individual listed; and
- current copies of certification documents for individuals performing specified QC functions.

4.3.2. **Material Delivery and Storage.** For material delivery and storage, include:

- the sequence of material processing, delivery, and minimum quantities to assure continuous plant operations.
- aggregate stockpiling procedures to avoid contamination and segregation.
- frequency, type, and timing of aggregate stockpile testing to assure conformance of material requirements before mixture production; and
- procedure for monitoring the quality and variability of asphalt binder.

4.3.3. **Production.** For production, include:

- loader operation procedures to avoid contamination in cold bins.
- procedures for calibrating and controlling cold feeds.
- procedures to eliminate debris or oversized material.
- procedures for adding and verifying rates of each applicable mixture component (e.g., aggregate, asphalt binder, RAP, RAS, lime, liquid antistrip, WMA).
- procedures for reporting job control test results; and
- procedures to avoid segregation and drain-down in the silo.

4.3.4. **Loading and Transporting.** For loading and transporting, include:

- type and application method for release agents; and
- truck loading procedures to avoid segregation.

4.3.5. **Placement and Compaction.** For placement and compaction, include:

- proposed agenda for mandatory pre-paving meeting, including date and location.
- proposed paving plan (e.g., paving widths, joint offsets, and lift thicknesses).
- type and application method for release agents in the paver and on rollers, shovels, lutes, and other utensils.
- procedures for the transfer of mixture into the paver, while avoiding segregation and preventing material spillage.
- process to balance production, delivery, paving, and compaction to achieve continuous placement operations and good ride quality.
- paver operations (e.g., operation of wings, height of mixture in auger chamber) to avoid physical and thermal segregation and other surface irregularities; and
- procedures to construct quality longitudinal and transverse joints.

4.4. Mixture Design.

4.4.1. **Design Requirements.** The Contractor may design the mixture using a Texas Gyratory Compactor (TGC) or a Superpave Gyratory Compactor (SGC) unless otherwise shown on the plans. Use the dense-graded.

design procedure provided in [Tex-204-F](#). Design the mixture to meet the requirements listed in Tables 1, 2, 3, 4, 5, 8, 9, and 10.

4.4.1.1.

Target Laboratory-Molded Density When the TGC Is Used. Design the mixture at a 96.5% target laboratory-molded density. Increase the target laboratory-molded density to 97.0% or 97.5% at the Contractor's discretion or when shown on the plans or specification.

4.4.1.2.

Design Number of Gyration (N_{design}) When the SGC Is Used. Design the mixture at 50 gyrations (N_{design}). Use a target laboratory-molded density of 96.0% to design the mixture; however, adjustments can be made to the N_{design} value as noted in Table 9. The N_{design} level may be reduced to no less than 35 gyrations at the Contractor's discretion.

Use an approved laboratory from the Department's MPL to perform the Hamburg Wheel test, and provide results with the mixture design, or provide the laboratory mixture and request that the Department perform the Hamburg Wheel test. The Engineer will be allowed 10 working days to provide the Contractor with Hamburg Wheel test results on the laboratory mixture design.

The Engineer will provide the mixture design when shown on the plans. The Contractor may submit a new mixture design at any time during the project. The Engineer will verify and approve all mixture designs (JMF1) before the Contractor can begin production.

Provide the Engineer with a mixture design report using the Department-provided template. Include the following items in the report:

- the combined aggregate gradation, source, specific gravity, and percent of each material used.
- asphalt binder content and aggregate gradation of RAP and RAS stockpiles.
- the target laboratory-molded density (or N_{design} level when using the SGC).
- results of all applicable tests.
- the mixing and molding temperatures.
- the signature of the Level 2 person or persons that performed the design.
- the date the mixture design was performed; and
- a unique identification number for the mixture design.

Table 8
Master Gradation Limits (% Passing by Weight or Volume) and VMA Requirements

Sieve Size	A Coarse Base	B Fine Base	C Coarse Surface	D Fine Surface	F Fine Mixture
2"	100.0 ¹	—	—	—	—
1-1/2"	98.0–100.0	100.0 ¹	—	—	—
1"	78.0–94.0	98.0–100.0	100.0 ¹	—	—
3/4"	64.0–85.0	84.0–98.0	95.0–100.0	100.0 ¹	—
1/2"	50.0–70.0	—	—	98.0–100.0	100.0 ¹
3/8"	—	60.0–80.0	70.0–85.0	85.0–100.0	98.0–100.0
#4	30.0–50.0	40.0–60.0	43.0–63.0	50.0–70.0	70.0–90.0
#8	22.0–36.0	29.0–43.0	32.0–44.0	35.0–46.0	38.0–48.0
#30	8.0–23.0	13.0–28.0	14.0–28.0	15.0–29.0	12.0–27.0
#50	3.0–19.0	6.0–20.0	7.0–21.0	7.0–20.0	6.0–19.0
#200	2.0–7.0	2.0–7.0	2.0–7.0	2.0–7.0	2.0–7.0
Design VMA, % Minimum					
—	12.0	13.0	14.0	15.0	16.0
Production (Plant-Produced) VMA, % Minimum					
—	11.5	12.5	13.5	14.5	15.5

1. Defined as maximum sieve size. No tolerance allowed.

Table 9
Laboratory Mixture Design Properties

Mixture Property	Test Method	Requirement
Target laboratory-molded density, % (TGC)	Tex-207-F	96.5 ¹
Design gyrations (Ndesign for SGC)	Tex-241-F	50 ²
Indirect tensile strength (dry), psi	Tex-226-F	85–200 ³
Boil test ⁴	Tex-530-C	–

1. Increase to 97.0% or 97.5% at the Contractor's discretion or when shown on the plans or specification.
2. Adjust within a range of 35–100 gyrations when shown on the plans or specification or when mutually agreed between the Engineer and Contractor.
3. The Engineer may allow the IDT strength to exceed 200 psi if the corresponding Hamburg Wheel rut depth is greater than 3.0 mm and less than 12.5 mm.
4. Used to establish baseline for comparison to production results. May be waived when approved.

Table 10
Hamburg Wheel Test Requirements

High-Temperature Binder Grade	Test Method	Minimum # of Passes @ 12.5 mm ¹ Rut Depth, Tested @ 50°C
PG 64 or lower	Tex-242-F	10,000 ²
PG 70		15,000 ³
PG 76 or higher		20,000

1. When the rut depth at the required minimum number of passes is less than 3 mm, the Engineer may require the Contractor to increase the target laboratory-molded density (TGC) by 0.5% to no more than 97.5% or lower the Ndesign level (SGC) to no less than 35 gyrations.
2. May be decreased to no less than 5,000 passes when shown on the plans.
3. May be decreased to no less than 10,000 passes when shown on the plans.

4.4.2. **Job-Mix Formula Approval.** The job-mix formula (JMF) is the combined aggregate gradation, target laboratory-molded density (or Ndesign level), and target asphalt percentage used to establish target values for hot-mix production. JMF1 is the original laboratory mixture design used to produce the trial batch. When WMA is used, JMF1 may be designed and submitted to the Engineer without including the WMA additive. When WMA is used, document the additive or process used and recommended rate on the JMF1 submittal. The Engineer and the Contractor will verify JMF1 based on plant-produced mixture from the trial batch unless otherwise approved. The Engineer may accept an existing mixture design previously used on a Department project and may waive the trial batch to verify JMF1. The Department may require the Contractor to reimburse the Department for verification tests if more than 2 trial batches per design are required.

4.4.2.1. *Contractor's Responsibilities.*

4.4.2.1.1. **Providing Gyratory Compactor.** Use a TGC calibrated in accordance with [Tex-914-K](#) when electing or required to design the mixture in accordance with [Tex-204-F](#), Part I, for molding production samples. Furnish an SGC calibrated in accordance with [Tex-241-F](#) when electing or required to design the mixture in accordance with [Tex-204-F](#), Part IV, for molding production samples. Locate the SGC, if used, at the Engineer's field laboratory and make the SGC available to the Engineer for use in molding production samples.

4.4.2.1.2. **Gyratory Compactor Correlation Factors.** Use [Tex-206-F](#), Part II, to perform a gyratory compactor correlation when the Engineer uses a different gyratory compactor. Apply the correlation factor to all subsequent production test results.

4.4.2.1.3. **Submitting JMF1.** Furnish a mix design report (JMF1) with representative samples of all component materials and request approval to produce the trial batch. Provide approximately 10,000 g of the design mixture if opting to have the Department perform the Hamburg Wheel test on the laboratory mixture, and request that the Department perform the test.

4.4.2.1.4. **Supplying Aggregates.** Provide approximately 40 lb. of each aggregate stockpile unless otherwise directed.

4.4.2.1.5. **Supplying Asphalt.** Provide at least 1 gal. of the asphalt material and sufficient quantities of any additives proposed for use.

4.4.2.1.6. **Ignition Oven Correction Factors.** Determine the aggregate and asphalt correction factors from the ignition oven in accordance with [Tex-236-F](#). Provide the Engineer with split samples of the mixtures before the trial batch production, including all additives (except water), and blank samples used to determine the correction factors for the ignition oven used for QA testing during production. Correction factors established from a previously approved mixture design may be used for the current mixture design if the mixture design and ignition oven are the same as previously used, unless otherwise directed.

4.4.2.1.7. **Boil Test.** Perform the test and retain the tested sample from [Tex-530-C](#) until completion of the project or as directed. Use this sample for comparison purposes during production. The Engineer may waive the requirement for the boil test.

4.4.2.1.8. **Trial Batch Production.** Provide a plant-produced trial batch upon receiving conditional approval of JMF1 and authorization to produce a trial batch, including the WMA additive or process if applicable, for verification testing of JMF1 and development of JMF2. Produce a trial batch mixture that meets the requirements in Table 4, Table 5, and Table 11. The Engineer may accept test results from recent production of the same mixture instead of a new trial batch.

4.4.2.1.9. **Trial Batch Production Equipment.** Use only equipment and materials proposed for use on the project to produce the trial batch.

4.4.2.1.10. **Trial Batch Quantity.** Produce enough quantity of the trial batch to ensure that the mixture meets the specification requirements.

4.4.2.1.11. **Number of Trial Batches.** Produce trial batches as necessary to obtain a mixture that meets the specification requirements.

4.4.2.1.12. **Trial Batch Sampling.** Obtain a representative sample of the trial batch and split it into 3 equal portions in accordance with [Tex-222-F](#). Label these portions as "Contractor," "Engineer," and "Referee." Deliver samples to the appropriate laboratory as directed.

4.4.2.1.13. **Trial Batch Testing.** Test the trial batch to ensure the mixture produced using the proposed JMF1 meets the mixture requirements in Table 11. Ensure the trial batch mixture is also in compliance with the Hamburg Wheel requirement in Table 10. Use a department-approved laboratory to perform the Hamburg Wheel test on the trial batch mixture or request that the Department perform the Hamburg Wheel test. The Engineer will be allowed 10 working days to provide the Contractor with Hamburg Wheel test results on the trial batch. Provide the Engineer with a copy of the trial batch test results.

4.4.2.1.14. **Development of JMF2.** Evaluate the trial batch test results after the Engineer grants full approval of JMF1 based on results from the trial batch, determine the optimum mixture proportions, and submit as JMF2. Adjust the asphalt binder content or gradation to achieve the specified target laboratory-molded density. The asphalt binder content established for JMF2 is not required to be within any tolerance of the optimum asphalt binder content established for JMF1; however, mixture produced using JMF2 must meet the voids in mineral aggregates (VMA) requirements for production shown in Table 8. If the optimum asphalt binder content for JMF2 is more than 0.5% lower than the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform [Tex-226-F](#) on Lot 1 production to confirm the indirect tensile strength does not exceed 200 psi. Verify that JMF2 meets the mixture requirements in Table 5.

4.4.2.1.15. **Mixture Production.** Use JMF2 to produce Lot 1 as described in Section 341.4.9.3.1.1., "Lot 1 Placement," after receiving approval for JMF2 and a passing result from the Department's or a Department-approved laboratory's Hamburg Wheel test on the trial batch. If desired, proceed to Lot 1 production, once JMF2 is approved, at the Contractor's risk without receiving the results from the Department's Hamburg Wheel test on the trial batch.

Notify the Engineer if electing to proceed without Hamburg Wheel test results from the trial batch. Note that the Engineer may require up to the entire subplot of any mixture failing the Hamburg Wheel test to be removed and replaced at the Contractor's expense.

4.4.2.1.16. **Development of JMF3.** Evaluate the test results from Lot 1, determine the optimum mixture proportions, and submit as JMF3 for use in Lot 2.

4.4.2.1.17. **JMF Adjustments.** If JMF adjustments are necessary to achieve the specified requirements, make the adjustments before beginning a new lot. The adjusted JMF must:

- be provided to the Engineer in writing before the start of a new lot.
- be numbered in sequence to the previous JMF.
- meet the mixture requirements in Table 4 and Table 5.
- meet the master gradation limits shown in Table 8; and
- be within the operational tolerances of JMF2 listed in Table 11.

4.4.2.1.18. **Requesting Referee Testing.** Use referee testing, if needed, in accordance with Section 341.4.9.1., "Referee Testing," to resolve testing differences with the Engineer.

Table 11
Operational Tolerances

Description	Test Method	Allowable Difference Between Trial Batch and JMF1 Target	Allowable Difference from Current JMF Target	Allowable Difference between Contractor and Engineer ¹
Individual % retained for #8 sieve and larger			±5.0 ^{2,3}	±5.0
Individual % retained for sieves smaller than #8 and larger than #200	Tex-200-F or Tex-236-F	Must be Within Master Grading Limits in Table 8	±3.0 ^{2,3}	±3.0
% passing the #200 sieve	Tex-236-F	±0.5	±2.0 ^{2,3}	±1.6
Asphalt binder content, %	Tex-236-F	±0.5	±0.3 ³	±0.3
Laboratory-molded density, %		±1.0	±1.0	±1.0
In-place air voids, %	Tex-207-F	N/A	N/A	±1.0
Laboratory-molded bulk specific gravity		N/A	N/A	±0.020
VMA, %, min	Tex-204-F	Note 4	Note 4	N/A
Theoretical maximum specific (Rice) gravity	Tex-227-F	N/A	N/A	±0.020

1. Contractor may request referee testing only when values exceed these tolerances.
2. When within these tolerances, mixture production gradations may fall outside the master grading limits; however, the % passing the #200 will be considered out of tolerance when outside the master grading limits.
3. Only applies to mixture produced for Lot 1 and higher.
4. Test and verify that Table 8 requirements are met.

4.4.2.2. *Engineer's Responsibilities.*

4.4.2.2.1. **Gyratory Compactor.** For mixtures designed in accordance with [Tex-204-F](#), Part I, the Engineer will use a Department TGC, calibrated in accordance with [Tex-914-K](#), to mold samples for trial batch and production testing. The Engineer will make the Department TGC and the Department field laboratory available to the Contractor for molding verification samples, if requested by the Contractor.

For mixtures designed in accordance with [Tex-204-F](#), Part IV, the Engineer will use a Department SGC, calibrated in accordance with [Tex-241-F](#), to mold samples for laboratory mixture design verification. For molding trial batch and production specimens, the Engineer will use the Contractor-provided SGC at the field laboratory or provide and use a Department SGC at an alternate location. The Engineer will make the Contractor-provided SGC in the Department field laboratory available to the Contractor for molding verification samples.

4.4.2.2.2. **Conditional Approval of JMF1 and Authorizing Trial Batch.** The Engineer will review and verify conformance of the following information within 2 working days of receipt:

- the Contractor's mix design report (JMF1).
- the Contractor-provided Hamburg Wheel test results.

- all required materials including aggregates, asphalt, additives, and recycled materials; and
- the mixture specifications.

The Engineer would grant the Contractor conditional approval of JMF1 if the information provided on the paper copy of JMF1 indicates that the Contractor's mixture design meets the specifications. When the Contractor does not provide Hamburg Wheel test results with laboratory mixture design, 10 working days are allowed for conditional approval of JMF1. The Engineer will base full approval of JMF1 on the test results on mixture from the trial batch.

Unless waived, the Engineer will determine the Micro-Deval abrasion loss in accordance with Section 341.2.1.1.2., "Micro-Deval Abrasion." If the Engineer's test results are pending after 2 working days, conditional approval of JMF1 will still be granted within 2 working days of receiving JMF1. When the Engineer's test results become available, they will be used for specification compliance.

After conditionally approving JMF1, including either Contractor- or Department-supplied Hamburg Wheel test results, the Contractor is authorized to produce a trial batch.

4.4.2.2.3. **Hamburg Wheel Testing of JMF1.** If the Contractor requests the option to have the Department perform the Hamburg Wheel test on the laboratory mixture, the Engineer will mold samples in accordance with [Tex-242-F](#) to verify compliance with the Hamburg Wheel test requirement in Table 10.

4.4.2.2.4. **Ignition Oven Correction Factors.** The Engineer will use the split samples provided by the Contractor to determine the aggregate and asphalt correction factors for the ignition oven used for QA testing during production in accordance with [Tex-236-F](#).

4.4.2.2.5. **Testing the Trial Batch.** Within 1 full working day, the Engineer will sample and test the trial batch to ensure that the mixture meets the requirements in Table 11. If the Contractor requests the option to have the Department perform the Hamburg Wheel test on the trial batch mixture, the Engineer will mold samples in accordance with [Tex-242-F](#) to verify compliance with the Hamburg Wheel test requirement in Table 10.

The Engineer will have the option to perform the following tests on the trial batch:

- [Tex-226-F](#), to verify that the indirect tensile strength meets the requirement shown in Table 9; and
- [Tex-530-C](#), to retain and use for comparison purposes during production.

4.4.2.2.6. **Full Approval of JMF1.** The Engineer will grant full approval of JMF1 and authorize the Contractor to proceed with developing JMF2 if the Engineer's results for the trial batch meet the requirements in Table 11. The Engineer will notify the Contractor that an additional trial batch is required if the trial batch does not meet these requirements.

4.4.2.2.7. **Approval of JMF2.** The Engineer will approve JMF2 within one working day if the mixture meets the requirements in Table 5 and the gradation meets the master grading limits shown in Table 8. The asphalt binder content established for JMF2 is not required to be within any tolerance of the optimum asphalt binder content established for JMF1; however, mixture produced using JMF2 must meet the VMA requirements shown in Table 8. If the optimum asphalt binder content for JMF2 is more than 0.5% lower than the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform [Tex-226-F](#) on Lot 1 production to confirm the indirect tensile strength does not exceed 200 psi.

4.4.2.2.8. **Approval of Lot 1 Production.** The Engineer will authorize the Contractor to proceed with Lot 1 production (using JMF2) as soon as a passing result is achieved from the Department's or a Department-approved laboratory's Hamburg Wheel test on the trial batch. The Contractor may proceed at its own risk with Lot 1 production without the results from the Hamburg Wheel test on the trial batch.

If the Department's or Department-approved laboratory's sample from the trial batch fails the Hamburg Wheel test, the Engineer will suspend production until further Hamburg Wheel tests meet the specified values. The Engineer may require up to the entire subplot of any mixture failing the Hamburg Wheel test be removed and replaced at the Contractor's expense.

4.4.2.2.9. **Approval of JMF3 and Subsequent JMF Changes.** JMF3 and subsequent JMF changes are approved if they meet the mixture requirements shown in Table 4, Table 5, and the master grading limits shown in Table 8, and are within the operational tolerances of JMF2 shown in Table 11.

4.5. **Production Operations.** Perform a new trial batch when the plant or plant location is changed. Take corrective action and receive approval to proceed after any production suspension for noncompliance to the specification. Submit a new mix design and perform a new trial batch when the asphalt binder content of:

- any RAP stockpile used in the mix is more than 0.5% higher than the value shown on the mixture design report; or
- RAS stockpile used in the mix is more than 2.0% higher than the value shown on the mixture design report.

4.5.1. **Storage and Heating of Materials.** Do not heat the asphalt binder above the temperatures specified in Item 300, "Asphalts, Oils, and Emulsions," or outside the manufacturer's recommended values. Provide the Engineer with daily records of asphalt binder and hot-mix asphalt discharge temperatures (in legible and discernible increments) in accordance with Item 320, "Equipment for Asphalt Concrete Pavement," unless otherwise directed. Do not store mixture for a period long enough to affect the quality of the mixture, nor in any case longer than 12 hr. unless otherwise approved.

4.5.2. **Mixing and Discharge of Materials.** Notify the Engineer of the target discharge temperature and produce the mixture within 25°F of the target. Monitor the temperature of the material in the truck before shipping to ensure that it does not exceed 350°F (or 275°F for WMA) and is not lower than 215°F. The Department will not pay for or allow placement of any mixture produced above 350°F.

Produce WMA within the target discharge temperature range of 215°F and 275°F when WMA is required. Take corrective action any time the discharge temperature of the WMA exceeds the target discharge range. The Engineer may suspend production operations if the Contractor's corrective action is not successful at controlling the production temperature within the target discharge range. Note that when WMA is produced, it may be necessary to adjust burners to ensure complete combustion such that no burner fuel residue remains in the mixture.

Control the mixing time and temperature so that substantially all moisture is removed from the mixture before discharging from the plant. Determine the moisture content, if requested, by oven-drying in accordance with [Tex-212-F](#), Part II, and verify that the mixture contains no more than 0.2% of moisture by weight. Obtain the sample immediately after discharging the mixture into the truck and perform the test promptly.

4.6. **Hauling Operations.** Clean all truck beds before use to ensure that mixture is not contaminated. Use a release agent shown on the Department's MPL to coat the inside bed of the truck when necessary.

Use equipment for hauling as defined in Section 341.4.7.3.3., "Hauling Equipment." Use other hauling equipment only when allowed.

4.7. **Placement Operations.** Collect haul tickets from each load of mixture delivered to the project and provide the Department's copy to the Engineer approximately every hour, or as directed. Use a hand-held thermal camera or infrared thermometer, when a thermal imaging system is not used, to measure and record the internal temperature of the mixture as discharged from the truck or Material Transfer Device (MTD) before or as the mix enters the paver and an approximate station number or GPS coordinates on each ticket. Calculate the daily yield and cumulative yield for the specified lift and provide to the Engineer at the end of paving operations for each day unless otherwise directed. The Engineer may suspend production if the Contractor fails to produce and provide haul tickets and yield calculations by the end of paving operations for each day.

Prepare the surface by removing raised pavement markers and objectionable material such as moisture, dirt, sand, leaves, and other loose impediments from the surface before placing mixture. Remove vegetation from pavement edges. Place the mixture to meet the typical section requirements and produce a smooth, finished surface with a uniform appearance and texture. Offset longitudinal joints of successive courses of hot mix by at least 6 in. Place mixture so that longitudinal joints on the surface course coincide with lane lines, or as

directed. Ensure that all finished surfaces will drain properly. Place the mixture at the rate or thickness shown on the plans. The Engineer will use the guidelines in Table 12 to determine the compacted lift thickness of each layer when multiple lifts are required. The thickness determined is based on the rate of 110 lb./sq. yd. for each inch of pavement unless otherwise shown on the plans.

Table 12
Compacted Lift Thickness and Required Core Height

Mixture Type	Compacted Lift Thickness Guidelines		Minimum Untrimmed Core Height (in.) Eligible for Testing
	Minimum (in.)	Maximum (in.)	
A	3.00	6.00	2.00
B	2.50	5.00	1.75
C	2.00	4.00	1.50
D	1.50	3.00	1.25
F	1.25	2.50	1.25

4.7.1. Weather Conditions.

4.7.1.1.

When Using a Thermal Imaging System. The Contractor may pave any time the roadway is dry, and the roadway surface temperature is at least 32°F; however, the Engineer may restrict the Contractor from paving surface mixtures if the ambient temperature is likely to drop below 32°F within 12 hr. of paving. Provide output data from the thermal imaging system to demonstrate to the Engineer that no recurring severe thermal segregation exists in accordance with Section 341.4.7.3.1.2., “Thermal Imaging System.”

4.7.1.2.

When Not Using a Thermal Imaging System. Place mixture when the roadway surface temperature is at or above the temperatures listed in Table 13 unless otherwise approved or as shown on the plans. Measure the roadway surface temperature with a hand-held thermal camera or infrared thermometer. The Engineer may allow mixture placement to begin before the roadway surface reaches the required temperature if conditions are such that the roadway surface will reach the required temperature within 2 hr. of beginning placement operations. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. The Engineer may restrict the Contractor from paving if the ambient temperature is likely to drop below 32°F within 12 hr. of paving.

Table 13
Minimum Pavement Surface Temperatures

Originally Specified High Temperature Binder Grade	Minimum Pavement Surface Temperatures (°F)	
	Subsurface Layers or Night Paving Operations	Surface Layers Placed in Daylight Operations
PG 64 or lower	45	50
PG 70	55 ¹	60 ¹
PG 76 or higher	60 ¹	60 ¹

1. Contractors may pave at temperatures 10°F lower than these values when utilizing a paving process including WMA or equipment that eliminates thermal segregation. In such cases, use a hand-held thermal camera operated in accordance with [Tex-244-F](#) to demonstrate to the satisfaction of the Engineer that the uncompacted mat has no more than 10°F of thermal segregation.

4.7.2.

Tack Coat. Clean the surface before placing the tack coat. The Engineer will set the rate between 0.04 and 0.10 gal. of residual asphalt per square yard of surface area. Apply a uniform tack coat at the specified rate unless otherwise directed. Apply the tack coat in a uniform manner to avoid streaks and other irregular patterns. Apply a thin, uniform tack coat to all contact surfaces of curbs, structures, and all joints. Allow adequate time for emulsion to break completely before placing any material. Prevent splattering of tack coat when placed adjacent to curb, gutter, and structures. Roll the tack coat with a pneumatic-tire roller to remove streaks and other irregular patterns when directed.

4.7.3. Lay-Down Operations.

4.7.3.1.

Thermal Profile. Use a hand-held thermal camera or a thermal imaging system to obtain a continuous thermal profile in accordance with [Tex-244-F](#). Thermal profiles are not applicable in areas described in Section 341.4.9.3.1.4., “Miscellaneous Areas.”

4.7.3.1.1. *Thermal Segregation.*

4.7.3.1.1.1. **Moderate.** Any areas that have a temperature differential greater than 25°F, but not exceeding 50°F, are deemed as having moderate thermal segregation.

4.7.3.1.1.2. **Severe.** Any areas that have a temperature differential greater than 50°F are deemed as having severe thermal segregation.

4.7.3.1.2. **Thermal Imaging System.** Review the output results when a thermal imaging system is used, and provide the automated report described in [Tex-244-F](#) to the Engineer daily unless otherwise directed. Modify the paving process as necessary to eliminate any recurring (moderate or severe) thermal segregation identified by the thermal imaging system. The Engineer may suspend paving operations if the Contractor cannot successfully modify the paving process to eliminate recurring severe thermal segregation. Density profiles are not required and not applicable when using a thermal imaging system. Provide the Engineer with electronic copies of all daily data files that can be used with the thermal imaging system software to generate temperature profile plots upon completion of the project or as requested by the Engineer.

4.7.3.1.3. **Thermal Camera.** Take immediate corrective action to eliminate recurring moderate thermal segregation when a hand-held thermal camera is used. Evaluate areas with moderate thermal segregation by performing density profiles in accordance with Section 341.4.9.3.3.2., "Segregation (Density Profile)." Provide the Engineer with the thermal profile of every subplot within one working day of the completion of each lot. Report the results of each thermal profile in accordance with Section 341.4.2., "Reporting and Responsibilities." The Engineer will use a hand-held thermal camera to obtain a thermal profile at least once per project. No production or placement payment adjustments greater than 1.000 will be paid for any subplot that contains severe thermal segregation. Suspend operations and take immediate corrective action to eliminate severe thermal segregation unless otherwise directed. Resume operations when the Engineer determines that subsequent production will meet the requirements of this Section. Evaluate areas with severe thermal segregation by performing density profiles in accordance with Section 341.4.9.3.3.2., "Segregation (Density Profile)." Remove and replace the material in any areas that have both severe thermal segregation and a failing result for Segregation (Density Profile) unless otherwise directed. The subplot in question may receive a production and placement payment adjustment greater than 1.000, if applicable, when the defective material is successfully removed and replaced.

4.7.3.2. **Windrow Operations.** Operate windrow pickup equipment so that when hot mix is placed in windrows, substantially all the mixture deposited on the roadbed is picked up and loaded into thepaver.

4.7.3.3. **Hauling Equipment.** Use belly dumps, live bottom, or end dump trucks to haul and transfer mixture; however, with exception of paving miscellaneous areas, end dump trucks are only allowed when used in conjunction with an MTD with remixing capability or when a thermal imaging system is used unless otherwise allowed.

4.7.3.4. **Screed Heaters.** Turn off screed heaters to prevent overheating of the mat if the paver stops for more than 5 min. The Engineer may evaluate the suspect area in accordance with Section 341.4.9.3.3.4., "Recovered Asphalt Dynamic Shear Rheometer (DSR)," if the screed heater remains on for more than 5 min. while the paver is stopped.

4.8. **Compaction.** Compact the pavement uniformly to contain between 3.8% and 8.5% in-place air voids. Take immediate corrective action to bring the operation within 3.8% and 8.5% when the in-place air voids exceed the range of these tolerances. The Engineer will allow paving to resume when the proposed corrective action is likely to yield between 3.8% and 8.5% in-place air voids.

Obtain cores in areas placed under Exempt Production, as directed, at locations determined by the Engineer. The Engineer may test these cores and suspend operations or require removal and replacement if the in-place air voids are less than 2.7% or more than 9.9%. Areas defined in Section 341.4.9.3.1.4., "Miscellaneous Areas," are not subject to in-place air void determination.

Furnish the type, size, and number of rollers required for compaction as approved. Use a pneumatic-tire roller to seal the surface unless excessive pickup of fines occurs. Use additional rollers as required to remove any roller marks. Use only water or an approved release agent on rollers, tamps, and other compaction equipment unless otherwise directed.

Use the control strip method shown in [Tex-207-F](#), Part IV, on the first day of production to establish the rolling pattern that will produce the desired in-place air voids unless otherwise directed.

Use tamps to thoroughly compact the edges of the pavement along curbs, headers, and similar structures and in locations that will not allow thorough compaction with rollers. The Engineer may require rolling with a trench roller on widened areas, in trenches, and in other limited areas.

Complete all compaction operations before the pavement temperature drops below 160°F unless otherwise allowed. The Engineer may allow compaction with a light finish roller operated in static mode for pavement temperatures below 160°F.

Allow the compacted pavement to cool to 160°F or lower before opening to traffic unless otherwise directed. Sprinkle the finished mat with water or limewater, when directed, to expedite opening the roadway to traffic.

4.9.

Acceptance Plan. Payment adjustments for the material will be in accordance with Article 341.6., "Payment."

Sample and test the hot mix on a lot and subplot basis. Suspend production until test results or other information indicates to the satisfaction of the Engineer that the next material produced or placed will result in payment factors of at least 1.000, if the production payment factor given in Section 341.6.1., "Production Payment Adjustment Factors," for 2 consecutive lots or the placement pay factor given in Section 341.6.2., "Placement Payment Adjustment Factors," for 2 consecutive lots is below 1.000.

4.9.1.

Referee Testing. The Construction Division is the referee laboratory. The Contractor may request referee testing if a "remove and replace" condition is determined based on the Engineer's test results, or if the differences between Contractor and Engineer test results exceed the maximum allowable difference shown in Table 11 and the differences cannot be resolved. The Contractor may also request referee testing if the Engineer's test results require suspension of production and the Contractor's test results are within specification limits. Make the request within 5 working days after receiving test results and cores from the Engineer. Referee tests will be performed only on the subplot in question and only for the particular tests in question. Allow 10 working days from the time the referee laboratory receives the samples for test results to be reported. The Department may require the Contractor to reimburse the Department for referee tests if more than 3 referee tests per project are required and the Engineer's test results are closer to the referee test results than the Contractor's test results.

The Construction Division will determine the laboratory-molded density based on the molded specific gravity and the maximum theoretical specific gravity of the referee sample. The in-place air voids will be determined based on the bulk specific gravity of the cores, as determined by the referee laboratory and the Engineer's average maximum theoretical specific gravity for the lot. With the exception of "remove and replace" conditions, referee test results are final and will establish payment adjustment factors for the subplot in question. The Contractor may decline referee testing and accept the Engineer's test results when the placement payment adjustment factor for any subplot results in a "remove and replace" condition. Placement sublots subject to be removed and replaced will be further evaluated in accordance with Section 341.6.2.2., "Placement Sublots Subject to Removal and Replacement."

4.9.2.

Production Acceptance.

4.9.2.1.

Production Lot. A production lot consists of 4 equal sublots. The default quantity for Lot 1 is 1,000 tons; however, when requested by the Contractor, the Engineer may increase the quantity for Lot 1 to no more than 4,000 tons. The Engineer will select subsequent lot sizes based on the anticipated daily production such that approximately 3 to 4 sublots are produced each day. The lot size will be between 1,000 tons and 4,000 tons. The Engineer may change the lot size before the Contractor begins any lot.

If the optimum asphalt binder content for JMF2 is more than 0.5% lower than the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform [Tex-226-F](#) on Lot 1 to confirm the indirect tensile strength does not exceed 200 psi. Take corrective action to bring the mixture within specification compliance if the indirect tensile strength exceeds 200 psi unless otherwise directed.

4.9.2.1.1. **Incomplete Production Lots.** If a lot is begun but cannot be completed, such as on the last day of production or in other circumstances deemed appropriate, the Engineer may close the lot. Adjust the payment for the incomplete lot in accordance with Section 341.6.1., "Production Payment Adjustment Factors." Close all lots within 5 working days unless otherwise allowed.

4.9.2.2. Production Sampling.

4.9.2.2.1. **Mixture Sampling.** Obtain hot-mix samples from trucks at the plant in accordance with [Tex-222-F](#). The sampler will split each sample into 3 equal portions in accordance with [Tex-200-F](#) and label these portions as "Contractor," "Engineer," and "Referee." The Engineer will perform or witness the sample splitting and take immediate possession of the samples labeled "Engineer" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" until the Department's testing is completed.

4.9.2.2.1.1. **Random Sample.** At the beginning of the project, the Engineer will select random numbers for all production sublots. Determine sample locations in accordance with [Tex-225-F](#). Take one sample for each subplot at the randomly selected location. The Engineer will perform or witness the sampling of production sublots.

4.9.2.2.1.2. **Blind Sample.** For one subplot per lot, the Engineer will obtain and test a "blind" sample instead of the random sample collected by the Contractor. Test either the "blind" or the random sample; however, referee testing (if applicable) will be based on a comparison of results from the "blind" sample. The location of the Engineer's "blind" sample will not be disclosed to the Contractor. The Engineer's "blind" sample may be randomly selected in accordance with [Tex-225-F](#) for any subplot or selected at the discretion of the Engineer. The Engineer will use the Contractor's split sample for sublots not sampled by the Engineer.

4.9.2.2.2. **Informational Cantabro and Overlay Testing.** When requested or shown on the plans, select one random subplot from Lot 2 or higher for Cantabro and Overlay testing during the first week of production. Obtain and provide the Engineer with approximately 90 lb. (40 kg) of mixture in sealed containers, boxes, or bags labeled with the Control-Section-Job (CSJ), mixture type, lot, and subplot number. The Engineer will ship the mixture to the Construction Division for Cantabro and Overlay testing. Results from these tests will not be used for specification compliance.

4.9.2.2.3. **Asphalt Binder Sampling.** Obtain a 1-qt. sample of the asphalt binder for each lot of mixture produced. Obtain the sample at approximately the same time the mixture random sample is obtained. Sample from a port located immediately upstream from the mixing drum or pug mill in accordance with [Tex-500-C](#), Part II. Label the can with the corresponding lot and subplot numbers and deliver the sample to the Engineer. The Engineer may also obtain independent samples. If obtaining an independent asphalt binder sample, the Engineer will split a sample of the asphalt binder with the Contractor. The Engineer will test at least one asphalt binder sample per project to verify compliance with Item 300, "Asphalts, Oils, and Emulsions."

4.9.2.3. **Production Testing.** The Contractor and Engineer must perform production tests in accordance with Table 14. The Contractor has the option to verify the Engineer's test results on split samples provided by the Engineer. Determine compliance with operational tolerances listed in Table 11 for all sublots.

Take immediate corrective action if the Engineer's laboratory-molded density on any subplot is less than 95.0% or greater than 98.0% to bring the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

The Engineer may allow alternate methods for determining the asphalt binder content and aggregate gradation if the aggregate mineralogy is such that [Tex-236-F](#) does not yield reliable results. Provide evidence that results from [Tex-236-F](#) are not reliable before requesting permission to use an alternate method unless otherwise directed. Use the applicable test procedure as directed if an alternate test method is allowed.

Table 14
Production and Placement Testing Frequency

Description	Test Method	Minimum Contractor Testing Frequency	Minimum Engineer Testing Frequency
Individual % retained for #8 sieve and larger	Tex-200-F or Tex-236-F	1 per subplot	1 per 12 sublots ¹
Individual % retained for sieves smaller than #8 and larger than #200 % passing the #200 sieve			
Laboratory-molded density	Tex-207-F	N/A	1 per subplot ¹
Laboratory-molded bulk specific gravity	Tex-204-F		
In-place air voids	Tex-207-F , Part V	1 per subplot	1 per project
VMA	Tex-207-F , Part VII		
Segregation (density profile) ²	Tex-212-F , Part II	When directed	
Longitudinal joint density	Tex-227-F	N/A	1 per subplot ¹
Moisture content	Tex-236-F	1 per subplot	1 per lot ¹
Theoretical maximum specific (Rice) gravity	Tex-242-F	N/A	
Asphalt binder content	Tex-217-F , Part III	N/A	
Hamburg Wheel test	Tex-244-F	1 per subplot	
Recycled Asphalt Shingles (RAS) ³	Tex-500-C	1 per lot (sample only)	1 per project
Thermal profile ²	Tex-500-C , Part III	N/A	
Asphalt binder sampling and testing	Tex-530-C	1 per lot	
Tack coat sampling and testing	Tex-245-F	1 per project (sample only)	
Boil test ⁴	Tex-248-F		
Cantabro loss ⁵			
Overlay test ⁵			

1. For production defined in Section 341.4.9.4., "Exempt Production," the Engineer will test one per day if 100 tons or more are produced. For Exempt Production, no testing is required when less than 100 tons are produced.
2. Not required when a thermal imaging system is used.
3. Testing performed by the Construction Division or designated laboratory.
4. The Engineer may reduce or waive the sampling and testing requirements based on a satisfactory test history.
5. Testing performed by the Construction Division and for informational purposes only.

4.9.2.4. **Operational Tolerances.** Control the production process within the operational tolerances listed in Table 11. When production is suspended, the Engineer will allow production to resume when test results or other information indicates the next mixture produced will be within the operational tolerances.

4.9.2.4.1. **Gradation.** Suspend operation and take corrective action if any aggregate is retained on the maximum sieve size shown in Table 8. A subplot is defined as out of tolerance if either the Engineer's or the Contractor's test results are out of operational tolerance. Suspend production when test results for gradation exceed the operational tolerances for 3 consecutive sublots on the same sieve or 4 consecutive sublots on any sieve unless otherwise directed. The consecutive sublots may be from more than one lot.

4.9.2.4.2. **Asphalt Binder Content.** A subplot is defined as out of operational tolerance if either the Engineer's or the Contractor's test results exceed the values listed in Table 11. No production or placement payment adjustments greater than 1.000 will be paid for any subplot that is out of operational tolerance for asphalt binder content. Suspend production and shipment of the mixture if the Engineer's or the Contractor's asphalt binder content deviates from the current JMF by more than 0.5% for any subplot.

4.9.2.4.3. **Voids in Mineral Aggregates (VMA).** The Engineer will determine the VMA for every subplot. For sublots when the Engineer does not determine asphalt binder content, the Engineer will use the asphalt binder content results from QC testing performed by the Contractor to determine VMA.

Take immediate corrective action if the VMA value for any subplot is less than the minimum VMA requirement for production listed in Table 8. Suspend production and shipment of the mixture if the Engineer's VMA results on 2 consecutive sublots are below the minimum VMA requirement for production listed in Table 8. No production or placement payment adjustments greater than 1.000 will be paid for any subplot that does not meet the minimum VMA requirement for production listed in Table 8 based on the Engineer's VMA determination.

Suspend production and shipment of the mixture if the Engineer's VMA result is more than 0.5% below the minimum VMA requirement for production listed in Table 8. In addition to suspending production, the Engineer may require removal and replacement or may allow the subplot to be left in place without payment.

4.9.2.4.4. **Hamburg Wheel Test.** The Engineer may perform a Hamburg Wheel test at any time during production, including when the boil test indicates a change in quality from the materials submitted for JMF1. In addition to testing production samples, the Engineer may obtain cores and perform Hamburg Wheel tests on any areas of the roadway where rutting is observed. Suspend production until further Hamburg Wheel tests meet the specified values when the production or core samples fail the Hamburg Wheel test criteria in Table 10. Core samples, if taken, will be obtained from the center of the finished mat or other areas excluding the vehicle wheel paths. The Engineer may require up to the entire subplot of any mixture failing the Hamburg Wheel test to be removed and replaced at the Contractor's expense.

If the Department's or Department approved laboratory's Hamburg Wheel test results in a "remove and replace" condition, the Contractor may request that the Department confirm the results by re-testing the failing material. The Construction Division will perform the Hamburg Wheel tests and determine the final disposition of the material in question based on the Department's test results.

4.9.2.5. **Individual Loads of Hot-Mix.** The Engineer can reject individual truckloads of hot mix. When a load of hot-mix is rejected for reasons other than temperature, contamination, or excessive uncoated particles, the Contractor may request that the rejected load be tested. Make this request within 4 hr. of rejection. The Engineer will sample and test the mixture. If test results are within the operational tolerances shown in Table 11, payment will be made for the load. If test results are not within operational tolerances, no payment will be made for the load.

4.9.3. Placement Acceptance.

4.9.3.1. **Placement Lot.** A placement lot consists of 4 placement sublots. A placement subplot consists of the area placed during a production subplot.

4.9.3.1.1. **Lot 1 Placement.** Placement payment adjustments greater than 1.000 for Lot 1 will be in accordance with Section 341.6.2., "Placement Payment Adjustment Factors"; however, no placement adjustment less than 1.000 will be assessed for any subplot placed in Lot 1 when the in-place air voids are greater than or equal to 2.7% and less than or equal to 9.9%. Remove and replace any subplot with in-place air voids less than 2.7% or greater than 9.9%.

4.9.3.1.2. **Incomplete Placement Lots.** An incomplete placement lot consists of the area placed as described in Section 341.4.9.2.1.1., "Incomplete Production Lots," excluding areas defined in Section 341.4.9.3.1.4., "Miscellaneous Areas." Placement sampling is required if the random sample plan for production resulted in a sample being obtained from an incomplete production subplot.

4.9.3.1.3. **Shoulders, Ramps, Etc.** Shoulders, ramps, intersections, acceleration lanes, deceleration lanes, and turn lanes are subject to in-place air void determination and payment adjustments unless designated on the plans as not eligible for in-place air void determination. Intersections may be considered miscellaneous areas when determined by the Engineer.

4.9.3.1.4. **Miscellaneous Areas.** Miscellaneous areas include areas that typically involve significant handwork or discontinuous paving operations, such as temporary detours, driveways, mailbox turnouts, crossovers, gores, spot level-up areas, and other similar areas. Temporary detours are subject to in-place air void determination when shown on the plans. Miscellaneous areas also include level-ups and thin overlays when the layer thickness specified on the plans is less than the minimum untrimmed core height eligible for testing shown in Table 12. The specified layer thickness is based on the rate of 110 lb./sq. yd. for each inch of pavement unless another rate is shown on the plans. When "level up" is listed as part of the item bid description code, a payment adjustment factor of 1.000 will be assigned for all placement sublots as described in Article 341.6, "Payment." Miscellaneous areas are not eligible for random placement sampling locations. Compact miscellaneous areas in accordance with Section 341.4.8., "Compaction." Miscellaneous

areas are not subject to in-place air void determination, thermal profiles testing, segregation (density profiles), or longitudinal joint density evaluations.

4.9.3.2.

Placement Sampling. The Engineer will select random numbers for all placement sublots at the beginning of the project. The Engineer will provide the Contractor with the placement random numbers immediately after the subplot is completed. Mark the roadway location at the completion of each subplot and record the station number. Determine one random sample location for each placement subplot in accordance with [Tex-225-F](#). Adjust the random sample location by no more than necessary to achieve a 2-ft. clearance if the location is within 2 ft. of a joint or pavement edge.

Shoulders, ramps, intersections, acceleration lanes, deceleration lanes, and turn lanes are always eligible for selection as a random sample location; however, if a random sample location falls on one of these areas and the area is designated on the plans as not subject to in-place air void determination, cores will not be taken for the subplot and a 1.000 pay factor will be assigned to that subplot.

Provide the equipment and means to obtain and trim roadway cores on site. On-site is defined as in close proximity to where the cores are taken. Obtain the cores within one working day of the time the placement subplot is completed unless otherwise approved. Obtain two 6-in. diameter cores side-by-side from within 1 ft. of the random location provided for the placement subplot. For Type D and Type F mixtures, 4-in. diameter cores are allowed. Mark the cores for identification, measure and record the untrimmed core height, and provide the information to the Engineer. The Engineer will witness the coring operation and measurement of the core thickness. Visually inspect each core and verify that the current paving layer is bonded to the underlying layer. Take corrective action if an adequate bond does not exist between the current and underlying layer to ensure that an adequate bond will be achieved during subsequent placement operations.

Trim the cores immediately after obtaining the cores from the roadway in accordance with [Tex-207-F](#) if the core heights meet the minimum untrimmed value listed in Table 12. Trim the cores on site in the presence of the Engineer. Use a permanent marker or paint pen to record the lot and subplot numbers on each core as well as the designation as Core A or B. The Engineer may require additional information to be marked on the core and may choose to sign or initial the core. The Engineer will take custody of the cores immediately after they are trimmed and will retain custody of the cores until the Department's testing is completed. Before turning the trimmed cores over to the Engineer, the Contractor may wrap the trimmed cores or secure them in a manner that will reduce the risk of possible damage occurring during transport by the Engineer. After testing, the Engineer will return the cores to the Contractor.

The Engineer may have the cores transported back to the Department's laboratory at the HMA plant via the Contractor's haul truck or other designated vehicle. In such cases where the cores will be out of the Engineer's possession during transport, the Engineer will use Department-provided security bags and the Roadway Core Custody protocol located at <http://www.txdot.gov/business/specifications.htm> to provide a secure means and process that protects the integrity of the cores during transport.

Decide whether to include the pair of cores in the air void determination for that subplot if the core height before trimming is less than the minimum untrimmed value shown in Table 12. Trim the cores as described above before delivering to the Engineer if electing to have the cores included in the air void determination. Deliver untrimmed cores to the Engineer and inform the Engineer of the decision to not have the cores included in air void determination if electing to not have the cores included in air void determination. The placement pay factor for the subplot will be 1.000 if cores will not be included in air void determination.

Instead of the Contractor trimming the cores on site immediately after coring, the Engineer and the Contractor may mutually agree to have the trimming operations performed at an alternate location such as a field laboratory or other similar location. In such cases, the Engineer will take possession of the cores immediately after they are obtained from the roadway and will retain custody of the cores until testing is completed. Either the Department or Contractor representative may perform trimming of the cores. The Engineer will witness all trimming operations in cases where the Contractor representative performs the trimming operation.

Dry the core holes and tack the sides and bottom immediately after obtaining the cores. Fill the hole with the same type of mixture and properly compact the mixture. Repair core holes with other methods when approved.

4.9.3.3. **Placement Testing.** Perform placement tests in accordance with Table 14. After the Engineer returns the cores, the Contractor may test the cores to verify the Engineer's test results for in-place air voids. The allowable differences between the Contractor's and Engineer's test results are listed in Table 11.

4.9.3.3.1. **In-Place Air Voids.** The Engineer will measure in-place air voids in accordance with [Tex-207-F](#) and [Tex-227-F](#). Before drying to a constant weight, cores may be pre-dried using a Corelok or similar vacuum device to remove excess moisture. The Engineer will average the values obtained for all sublots in the production lot to determine the theoretical maximum specific gravity. The Engineer will use the average air void content for in-place air voids.

The Engineer will use the vacuum method to seal the core if required by [Tex-207-F](#). The Engineer will use the test results from the unsealed core to determine the placement payment adjustment factor if the sealed core yields a higher specific gravity than the unsealed core. After determining the in-place air void content, the Engineer will return the cores and provide test results to the Contractor.

4.9.3.3.2. **Segregation (Density Profile).** Test for segregation using density profiles in accordance with [Tex-207-F](#), Part V. Density profiles are not required and are not applicable when using a thermal imaging system. Density profiles are not applicable in areas described in Section 341.4.9.3.1.4., "Miscellaneous Areas."

Perform a density profile every time the paver stops for more than 60 sec. on areas that are identified by either the Contractor or the Engineer as having thermal segregation and on any visibly segregated areas unless otherwise approved. Perform a minimum of one profile per subplot if the paver does not stop for more than 60 sec. and there are no visibly segregated areas or areas that are identified as having thermal segregation.

Provide the Engineer with the density profile of every subplot in the lot within one working day of the completion of each lot. Report the results of each density profile in accordance with Section 341.4.2., "Reporting and Responsibilities."

The density profile is considered failing if it exceeds the tolerances in Table 15. No production or placement payment adjustments greater than 1.000 will be paid for any subplot that contains a failing density profile. When a hand-held thermal camera is used instead of a thermal imaging system, the Engineer will measure the density profile at least once per project. The Engineer's density profile results will be used when available. The Engineer may require the Contractor to remove and replace the area in question if the area fails the density profile and has surface irregularities as defined in Section 341.4.9.3.3.5., "Irregularities." The subplot in question may receive a production and placement payment adjustment greater than 1.000, if applicable, when the defective material is successfully removed and replaced.

Investigate density profile failures and take corrective actions during production and placement to eliminate the segregation. Suspend production if 2 consecutive density profiles fail unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

Table 15
Segregation (Density Profile) Acceptance Criteria

Mixture Type	Maximum Allowable Density Range (Highest to Lowest)	Maximum Allowable Density Range (Average to Lowest)
Type A & Type B	8.0 pcf	5.0 pcf
Type C, Type D & Type F	6.0 pcf	3.0 pcf

4.9.3.3.3. *Longitudinal Joint Density.*

4.9.3.3.3.1. **Informational Tests.** Perform joint density evaluations while establishing the rolling pattern and verify that the joint density is no more than 3.0 pcf below the density taken at or near the center of the mat. Adjust the

rolling pattern, if needed, to achieve the desired joint density. Perform additional joint density evaluations, at least once per subplot, unless otherwise directed.

4.9.3.3.3.2.

Record Tests. Perform a joint density evaluation for each subplot at each pavement edge that is or will become a longitudinal joint. Joint density evaluations are not applicable in areas described in Section 341.4.9.3.1.4., "Miscellaneous Areas." Determine the joint density in accordance with [Tex-207-F](#), Part VII. Record the joint density information and submit results on Department forms to the Engineer. The evaluation is considered failing if the joint density is more than 3.0 pcf below the density taken at the core random sample location and the correlated joint density is less than 90.0%. The Engineer will make independent joint density verification at least once per project and may make independent joint density verifications at the random sample locations. The Engineer's joint density test results will be used when available.

Provide the Engineer with the joint density of every subplot in the lot within one working day of the completion of each lot. Report the results of each joint density in accordance with Section 341.4.2., "Reporting and Responsibilities."

Investigate joint density failures and take corrective actions during production and placement to improve the joint density. Suspend production if the evaluations on 2 consecutive sublots fail unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

4.9.3.3.4.

Recovered Asphalt Dynamic Shear Rheometer (DSR). The Engineer may take production samples or cores from suspect areas of the project to determine recovered asphalt properties. Asphalt binders with an aging ratio greater than 3.5 do not meet the requirements for recovered asphalt properties and may be deemed defective when tested and evaluated by the Construction Division. The aging ratio is the DSR value of the extracted binder divided by the DSR value of the original unaged binder. Obtain DSR values in accordance with AASHTO T 315 at the specified high temperature performance grade of the asphalt. The Engineer may require removal and replacement of the defective material at the Contractor's expense. The asphalt binder will be recovered for testing from production samples or cores in accordance with [Tex-211-F](#).

4.9.3.3.5.

Irregularities. Identify and correct irregularities including segregation, rutting, raveling, flushing, fat spots, mat slippage, irregular color, irregular texture, roller marks, tears, gouges, streaks, uncoated aggregate particles, or broken aggregate particles. The Engineer may also identify irregularities, and in such cases, the Engineer will promptly notify the Contractor. If the Engineer determines that the irregularity will adversely affect pavement performance, the Engineer may require the Contractor to remove and replace (at the Contractor's expense) areas of the pavement that contain irregularities and areas where the mixture does not bond to the existing pavement.

If irregularities are detected, the Engineer may require the Contractor to immediately suspend operations or may allow the Contractor to continue operations for no more than one day while the Contractor is taking appropriate corrective action.

4.9.4.

Exempt Production. The Engineer may deem the mixture as exempt production for the following conditions:

- anticipated daily production is less than 1,000 tons.
- total production for the project is less than 5,000 tons.
- when mutually agreed between the Engineer and the Contractor; or
- when shown on the plans.

For exempt production, the Contractor is relieved of all production and placement sampling and testing requirements, and the production and placement pay factors are 1.000. All other specification requirements apply, and the Engineer will perform acceptance tests for production and placement listed in Table 14 when 100 tons or more per day are produced.

For exempt production:

- produce, haul, place, and compact the mixture in compliance with the specification and as directed.

- control mixture production to yield a laboratory-molded density that is within $\pm 1.0\%$ of the target laboratory-molded density as tested by the Engineer.
- compact the mixture in accordance with Section 341.4.8., "Compaction;" and
- when a thermal imaging system is not used, the Engineer may perform segregation (density profiles) and thermal profiles in accordance with the specification.

4.9.5. **Ride Quality.** Measure ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

5. MEASUREMENT

Hot mix will be measured by the ton of composite hot mix, which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520, "Weighing and Measuring Equipment."

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under Section 341.5., "Measurement," will be paid for at the unit bid price for "Dense Graded Hot-Mix Asphalt" of the mixture type, SAC, and binder specified. These prices are full compensation for surface preparation, materials including tack coat, placement, equipment, labor, tools, and incidentals.

Payment adjustments will be applied as determined in this Item; however, a payment adjustment factor of 1.000 will be assigned for all placement sublots for "level ups" only when "level up" is listed as part of the item bid description code. A payment adjustment factor of 1.000 will be assigned to all production and placement sublots when "exempt" is listed as part of the item bid description code.

Payment for each subplot, including applicable payment adjustments greater than 1.000, will only be paid for sublots when the Contractor supplies the Engineer with the required documentation for production and placement QC/QA, thermal profiles, segregation density profiles, and longitudinal joint densities in accordance with Section 341.4.2., "Reporting and Responsibilities." When a thermal imaging system is used, documentation is not required for thermal profiles or segregation density profiles on individual sublots; however, the thermal imaging system automated reports described in [Tex-244-F](#) are required.

Trial batches will not be paid for unless they are included in pavement work approved by the Department.

Payment adjustment for ride quality will be determined in accordance with Item 585, "Ride Quality for Pavement Surfaces."

6.1. **Production Payment Adjustment Factors.** The production payment adjustment factor is based on the laboratory-molded density using the Engineer's test results. A payment adjustment factor will be determined from Table 16 for each subplot using the deviation from the target laboratory-molded density defined in Table 9. The production payment adjustment factor for completed lots will be the average of the payment adjustment factors for the 4 sublots sampled within that lot.

Table 16
Production Payment Adjustment Factors for Laboratory-Molded Density¹

Absolute Deviation from Target Laboratory-Molded Density	Production Payment Adjustment Factor (Target Laboratory-Molded Density)
0.0	1.050
0.1	1.050
0.2	1.050
0.3	1.044
0.4	1.038
0.5	1.031
0.6	1.025
0.7	1.019
0.8	1.013
0.9	1.006
1.0	1.000
1.1	0.965
1.2	0.930
1.3	0.895
1.4	0.860
1.5	0.825
1.6	0.790
1.7	0.755
1.8	0.720
> 1.8	Remove and replace

1. If the Engineer's laboratory-molded density on any subplot is less than 95.0% or greater than 98.0%, take immediate corrective action to bring the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

6.1.1. **Payment for Incomplete Production Lots.** Production payment adjustments for incomplete lots, described under Section 341.4.9.2.1.1., "Incomplete Production Lots," will be calculated using the average production payment factors from all sublots sampled. A production payment factor of 1.000 will be assigned to any lot when the random sampling plan did not result in collection of any samples.

6.1.2. **Production Sublots Subject to Removal and Replacement.** If after referee testing, the laboratory-molded density for any subplot results in a "remove and replace" condition as listed in Table 16, the Engineer may require removal and replacement or may allow the subplot to be left in place without payment. The Engineer may also accept the subplot in accordance with Section 5.3.1., "Acceptance of Defective or Unauthorized Work." Replacement material meeting the requirements of this Item will be paid for in accordance with this Section.

6.2. **Placement Payment Adjustment Factors.** The placement payment adjustment factor is based on in-place air voids using the Engineer's test results. A payment adjustment factor will be determined from Table 17 for each subplot that requires in-place air void measurement. A placement payment adjustment factor of 1.000 will be assigned to the entire subplot when the random sample location falls in an area designated on the plans as not subject to in-place air void determination. A placement payment adjustment factor of 1.000 will be assigned to quantities placed in areas described in Section 341.4.9.3.1.4., "Miscellaneous Areas." The placement payment adjustment factor for completed lots will be the average of the placement payment adjustment factors for up to 4 sublots within that lot.

Table 17
Placement Payment Adjustment Factors for In-Place Air Voids

In-Place Air Voids	Placement Pay Adjustment Factor	In-Place Air Voids	Placement Pay Adjustment Factor
< 2.7	Remove and Replace	6.4	1.042
2.7	0.710	6.5	1.040
2.8	0.740	6.6	1.038
2.9	0.770	6.7	1.036
3.0	0.800	6.8	1.034
3.1	0.830	6.9	1.032
3.2	0.860	7.0	1.030
3.3	0.890	7.1	1.028
3.4	0.920	7.2	1.026
3.5	0.950	7.3	1.024
3.6	0.980	7.4	1.022
3.7	0.998	7.5	1.020
3.8	1.002	7.6	1.018
3.9	1.006	7.7	1.016
4.0	1.010	7.8	1.014
4.1	1.014	7.9	1.012
4.2	1.018	8.0	1.010
4.3	1.022	8.1	1.008
4.4	1.026	8.2	1.006
4.5	1.030	8.3	1.004
4.6	1.034	8.4	1.002
4.7	1.038	8.5	1.000
4.8	1.042	8.6	0.998
4.9	1.046	8.7	0.996
5.0	1.050	8.8	0.994
5.1	1.050	8.9	0.992
5.2	1.050	9.0	0.990
5.3	1.050	9.1	0.960
5.4	1.050	9.2	0.930
5.5	1.050	9.3	0.900
5.6	1.050	9.4	0.870
5.7	1.050	9.5	0.840
5.8	1.050	9.6	0.810
5.9	1.050	9.7	0.780
6.0	1.050	9.8	0.750
6.1	1.048	9.9	0.720
6.2	1.046	> 9.9	Remove and Replace
6.3	1.044		

6.2.1. **Payment for Incomplete Placement Lots.** Payment adjustments for incomplete placement lots described under Section 341.4.9.3.1.2., “Incomplete Placement Lots,” will be calculated using the average of the placement payment factors from all sublots sampled and sublots where the random location falls in an area designated on the plans as not eligible for in-place air void determination. A placement payment adjustment factor of 1.000 will be assigned to any lot when the random sampling plan did not result in collection of any samples.

6.2.2. **Placement Sublots Subject to Removal and Replacement.** If after referee testing, the placement payment adjustment factor for any subplot results in a “remove and replace” condition as listed in Table 17, the Engineer will choose the location of 2 cores to be taken within 3 ft. of the original failing core location. The Contractor will obtain the cores in the presence of the Engineer. The Engineer will take immediate possession of the untrimmed cores and submit the untrimmed cores to the Construction Division, where they will be trimmed if necessary and tested for bulk specific gravity within 10 working days of receipt.

The average bulk specific gravity of the cores will be divided by the Engineer’s average maximum theoretical specific gravity for that lot to determine the new payment adjustment factor of the subplot in question. If the new payment adjustment factor is 0.700 or greater, the new payment adjustment factor will apply to that

sublot. If the new payment adjustment factor is less than 0.700, no payment will be made for the subplot. Remove and replace the failing subplot, or the Engineer may allow the subplot to be left in place without payment. The Engineer may also accept the subplot in accordance with Section 5.3.1., "Acceptance of Defective or Unauthorized Work." Replacement material meeting the requirements of this Item will be paid for in accordance with this Section.

6.3.

Total Adjusted Pay Calculation. Total adjusted pay (TAP) will be based on the applicable payment adjustment factors for production and placement for each lot.

$$TAP = (A+B)/2$$

where:

A = Bid price \times production lot quantity \times average payment adjustment factor for the production lot

B = Bid price \times placement lot quantity \times average payment adjustment factor for the placement lot + (bid price \times quantity placed in miscellaneous areas \times 1.000)

Production lot quantity = Quantity placed - quantity left in place without payment

Placement lot quantity = Quantity placed - quantity left in place without payment - quantity placed in miscellaneous areas

Flexible Pavement Structure Repair

1. DESCRIPTION

Repair localized sections of flexible pavement structure including subgrade, base, and surfacing as shown on the plans.

2. MATERIALS

Furnish materials unless otherwise shown on the plans. Provide materials of the type and grade as shown on the plans and in accordance with the following.

- Item 132, "Embankment"
- Item 204, "Sprinkling"
- Item 247, "Flexible Base"
- Item 260, "Lime Treatment(Road-Mixed)"
- Item 263, "Lime Treatment(Plant-Mixed)"
- Item 275, "Cement Treatment(Road-Mixed)"
- Item 276, "Cement Treatment(Plant-Mixed)"
- Item 292, "Asphalt Treatment(Plant-Mixed)"
- Item 310, "Prime Coat"
- Item 316, "Seal Coat"
- Item 330, "Limestone Rock Asphalt Pavement"
- Item 334, "Hot-Mix Cold-Laid Asphalt Concrete Pavement"
- Item 340, "Dense Graded Hot-Mix Asphalt (Small Quantity)"

For asphalt concrete materials, Contractor testing and payment adjustment provisions will be waived unless otherwise shown on the plans.

3. EQUIPMENT

Furnish equipment in accordance with pertinent items. Use of a motor grader will be permitted for asphalt concrete pavement unless otherwise shown on the plans.

4. WORK METHODS

Repair using one or more of the following operations as shown on the plans. For Contracts with callout work, begin physical repair within 24 hr. of notification unless otherwise shown on the plans. Cut neat vertical faces around the perimeter of the work area when removing pavement structure layers. Removed materials are the property of the Contractor unless otherwise shown on the plans. Dispose of removed material in accordance with federal, state, and local regulations. Provide a smooth line and grade conforming to the adjacent pavement.

4.1. **Removing Pavement Structure.** Remove adjacent soil and vegetation if necessary to prevent contamination of the repair area and place it in a windrow. Do not damage adjacent pavement structure during repair operations. Remove flexible pavement structure layers from work area if subgrade work is required.

4.2. **Preparing Subgrade.** Fill holes, ruts, and depressions with approved material. Wet, reshape, and compact the subgrade thoroughly as directed.
Remove unstable subgrade material to the depth directed and replace with an approved material where subgrade has failed.

4.3. **Mixing and Placing Base Material.** Place, spread, and compact material in accordance with the applicable Item to the required or directed depth. Pulverize bituminous material to a maximum dimension of 2-1/2 in. and uniformly mix with existing base to the depth shown on the plans when the material is to remain in pavement structure.

4.3.1. **Flexible Base.** Use existing base and add new flexible base as required in accordance with Item 247, "Flexible Base," and details shown on the plans to achieve required section.

4.3.2. **Lime-Stabilized Base.** Use existing base, add new flexible base, and stabilize with a minimum lime content of 3% by weight of the total mixture. Construct in accordance with Item 260, "Lime Treatment (Road-Mixed)," or Item 263, "Lime Treatment (Plant-Mixed)," and details shown on the plans to achieve required section.

4.3.3. **Cement-Stabilized Base.** Use existing base, add flexible base, and stabilize with a minimum cement content of 4% by weight of the total mixture. Construct in accordance with Item 275, "Cement Treatment (Road-Mixed)," or Item 276, "Cement Treatment (Plant-Mixed)," and details shown on the plans to achieve required section.

4.3.4. **Asphalt-Stabilized Base.** Place asphalt-stabilized base in accordance with Item 292, "Asphalt Treatment (Plant-Mixed)," or Item 340, "Dense-Graded Hot-Mix Asphalt (Small Quantity)," and details shown on the plans to achieve required section.

4.3.5. **Limestone Rock Asphalt.** Place in accordance with Item 330, "Limestone Rock Asphalt Pavement," and details shown on the plans to achieve required section.

4.4. **Curing Base.** Cure in accordance with the appropriate Item unless otherwise directed or approved. Maintain completed base sections until surfacing.

4.5. **Surfacing.** Apply surfacing with materials as shown on the plans to the completed base section.

4.5.1. **Prime Coat.** Protect the compacted, finished, and cured flexible, lime-stabilized, or cement-stabilized base mixtures with a prime coat of the type and grade shown on the plans. Apply the prime coat at the rate shown on the plans.

4.5.2. **Surface Treatments.** Apply surface treatment with the type and grade of asphalt and aggregate as shown on the plans in accordance with Item 316, "Seal Coat."

4.5.3. **Asphalt Concrete Pavement.** Apply tack coat of the type and grade and at the rate shown on the plans unless otherwise directed. Construct in accordance with Item 330, "Limestone Rock Asphalt Pavement," Item 334, "Hot-Mix Cold-Laid Asphalt Concrete Pavement," or Item 340, "Dense-Graded Hot-Mix Asphalt (Small Quantity)," to achieve required section.

4.6. **Finishing.** Regrade and compact disturbed topsoil. Clean roadway surface after repair operations.

5. **MEASUREMENT**

This Item will be measured by the square yard. In areas where material is excavated, as directed, to depths greater than those specified on the plans, measurement will be made by dividing the actual depth of such area by the plan depth and then multiplying this figure by the area in square yard of work performed. Calculations for each repaired area will be rounded up to the nearest 1/10 sq. yd. At each repair location, the minimum area for payment purposes will be 1 sq. yd.

The minimum quantity for Contracts with callout work is 5 sq. yd. per callout unless otherwise shown on the plans.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Flexible Pavement Structure Repair" of the specified depth. This price is full compensation for scarifying, removing, hauling, spreading, disposing of, and stockpiling existing pavement structure; removing objectionable or unstable material; furnishing and placing materials; maintaining completed section before surfacing; applying tack or prime coat; hauling, sprinkling, spreading, and compacting; and equipment, labor, tools, and incidentals.

Flexible Pavement Structure Repair

7. DESCRIPTION

Repair localized sections of flexible pavement structure including subgrade, base, and surfacing as shown on the plans.

8. MATERIALS

Furnish materials unless otherwise shown on the plans. Provide materials of the type and grade as shown on the plans and in accordance with the following.

- Item 132, "Embankment"
- Item 204, "Sprinkling"
- Item 247, "Flexible Base"
- Item 260, "Lime Treatment(Road-Mixed)"
- Item 263, "Lime Treatment(Plant-Mixed)"
- Item 275, "Cement Treatment(Road-Mixed)"
- Item 276, "Cement Treatment(Plant-Mixed)"
- Item 292, "Asphalt Treatment(Plant-Mixed)"
- Item 310, "Prime Coat"
- Item 316, "Seal Coat"
- Item 330, "Limestone Rock Asphalt Pavement"
- Item 334, "Hot-Mix Cold-Laid Asphalt Concrete Pavement"
- Item 340, "Dense Graded Hot-Mix Asphalt (Small Quantity)"

For asphalt concrete materials, Contractor testing and payment adjustment provisions will be waived unless otherwise shown on the plans.

9. EQUIPMENT

Furnish equipment in accordance with pertinent items. Use of a motor grader will be permitted for asphalt concrete pavement unless otherwise shown on the plans.

10. WORK METHODS

Repair using one or more of the following operations as shown on the plans. For Contracts with callout work, begin physical repair within 24 hr. of notification unless otherwise shown on the plans. Cut neat vertical faces around the perimeter of the work area when removing pavement structure layers. Removed materials are the property of the Contractor unless otherwise shown on the plans. Dispose of removed material in accordance with federal, state, and local regulations. Provide a smooth line and grade conforming to the adjacent pavement.

4.7. **Removing Pavement Structure.** Remove adjacent soil and vegetation if necessary to prevent contamination of the repair area and place it in a windrow. Do not damage adjacent pavement structure during repair operations. Remove flexible pavement structure layers from work area if subgrade work is required.

4.8. **Preparing Subgrade.** Fill holes, ruts, and depressions with approved material. Wet, reshape, and compact the subgrade thoroughly as directed.
Remove unstable subgrade material to the depth directed and replace with an approved material where subgrade has failed.

4.9. **Mixing and Placing Base Material.** Place, spread, and compact material in accordance with the applicable Item to the required or directed depth. Pulverize bituminous material to a maximum dimension of 2-1/2 in. and uniformly mix with existing base to the depth shown on the plans when the material is to remain in pavement structure.

4.9.1. **Flexible Base.** Use existing base and add new flexible base as required in accordance with Item 247, "Flexible Base," and details shown on the plans to achieve required section.

4.9.2. **Lime-Stabilized Base.** Use existing base, add new flexible base, and stabilize with a minimum lime content of 3% by weight of the total mixture. Construct in accordance with Item 260, "Lime Treatment (Road-Mixed)," or Item 263, "Lime Treatment (Plant-Mixed)," and details shown on the plans to achieve required section.

4.9.3. **Cement-Stabilized Base.** Use existing base, add flexible base, and stabilize with a minimum cement content of 4% by weight of the total mixture. Construct in accordance with Item 275, "Cement Treatment (Road-Mixed)," or Item 276, "Cement Treatment (Plant-Mixed)," and details shown on the plans to achieve required section.

4.9.4. **Asphalt-Stabilized Base.** Place asphalt-stabilized base in accordance with Item 292, "Asphalt Treatment (Plant-Mixed)," or Item 340, "Dense-Graded Hot-Mix Asphalt (Small Quantity)," and details shown on the plans to achieve required section.

4.9.5. **Limestone Rock Asphalt.** Place in accordance with Item 330, "Limestone Rock Asphalt Pavement," and details shown on the plans to achieve required section.

4.10. **Curing Base.** Cure in accordance with the appropriate Item unless otherwise directed or approved. Maintain completed base sections until surfacing.

4.11. **Surfacing.** Apply surfacing with materials as shown on the plans to the completed base section.

4.11.1. **Prime Coat.** Protect the compacted, finished, and cured flexible, lime-stabilized, or cement-stabilized base mixtures with a prime coat of the type and grade shown on the plans. Apply the prime coat at the rate shown on the plans.

4.11.2. **Surface Treatments.** Apply surface treatment with the type and grade of asphalt and aggregate as shown on the plans in accordance with Item 316, "Seal Coat."

4.11.3. **Asphalt Concrete Pavement.** Apply tack coat of the type and grade and at the rate shown on the plans unless otherwise directed. Construct in accordance with Item 330, "Limestone Rock Asphalt Pavement," Item 334, "Hot-Mix Cold-Laid Asphalt Concrete Pavement," or Item 340, "Dense-Graded Hot-Mix Asphalt (Small Quantity)," to achieve required section.

4.12. **Finishing.** Regrade and compact disturbed topsoil. Clean roadway surface after repair operations.

11. MEASUREMENT

This Item will be measured by the square yard. In areas where material is excavated, as directed, to depths greater than those specified on the plans, measurement will be made by dividing the actual depth of such area by the plan depth and then multiplying this figure by the area in square yard of work performed. Calculations for each repaired area will be rounded up to the nearest 1/10 sq. yd. At each repair location, the minimum area for payment purposes will be 1 sq. yd.

The minimum quantity for Contracts with callout work is 5 sq. yd. per callout unless otherwise shown on the plans.

12. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Flexible Pavement Structure Repair" of the specified depth. This price is full compensation for scarifying, removing, hauling, spreading, disposing of, and stockpiling existing pavement structure; removing objectionable or unstable material; furnishing and placing materials; maintaining completed section before surfacing; applying tack or prime coat; hauling, sprinkling, spreading, and compacting; and equipment, labor, tools, and incidentals.

1. DESCRIPTION

Establish and remove offices, plants, and facilities. Move personnel, equipment, and supplies to and from the project or the vicinity of the project site to begin work or complete work on Contract Items. Bonds and insurance are required for performing mobilization.

For Contracts with emergency mobilization, provide a person and method of contact available 24 hrs. a day, 7 days a week unless otherwise shown on the plans. The time of notice will be the transmission time of the written notice or notice provided orally by the Department's representative.

2. MEASUREMENT

This Item will be measured by the lump sum or each as the work progresses. Mobilization is calculated on the base bid only and will not be paid for separately on any additive alternate items added to the Contract.

3. PAYMENT

For this Item, the adjusted Contract amount will be calculated as the total Contract amount less the lump sum for mobilization. Except for Contracts with callout or emergency work, mobilization will be paid in partial payments as follows:

- Payment will be made upon presentation of a paid invoice for the payment or performance bonds and required insurance,
- Payment will be made upon verification of documented expenditures for plant and facility setup. The combined amount for all these facilities will be no more than 10% of the mobilization lump sum or 1% of the total Contract amount, whichever is less,
- When 1% of the adjusted Contract amount for construction Items is earned, 50% of the mobilization lump sum bid or 5% of the total Contract amount, whichever is less, will be paid. Previous payments under this Item will be deducted from this amount,
- When 5% of the adjusted Contract amount for construction Items is earned, 75% of the mobilization lump sum bid or 10% of the total Contract amount, whichever is less, will be paid. Previous payments under the Item will be deducted from this amount,
- When 10% of the adjusted Contract amount for construction Items is earned, 90% of the mobilization lump sum bid or 10% of the total Contract amount, whichever is less, will be paid. Previous payments under this Item will be deducted from this amount,
- Upon final acceptance, 97% of the mobilization lump sum bid will be paid. Previous payments under this Item will be deducted from this amount, and
- Payment for the remainder of the lump sum bid for "Mobilization" will be made after all submittals are received, final quantities have been determined and when any separate vegetative establishment and maintenance, test, and performance periods provided for in the Contract have been successfully completed.

For projects with extended maintenance or performance periods, payment for the remainder of the lump sum bid for "Mobilization" will be made 6 months after final acceptance.

For Contracts with callout or emergency work, "Mobilization," will be paid as follows:

- Payment will be made upon presentation of a paid invoice for the payment of performance bonds and required insurance,
- Mobilization for callout work will be paid for each callout work request, and
- Mobilization for emergency work will be paid for each emergency work request.

Barricades, Signs, and Traffic Handling

1. DESCRIPTION

Provide, install, move, replace, maintain, clean, and remove all traffic control devices shown on the plans and as directed.

2. CONSTRUCTION

Comply with the requirements of Article 7.2., "Safety."

Implement the traffic control plan (TCP) shown on the plans.

Install traffic control devices straight and plumb. Make changes to the TCP only as approved. Minor adjustments to meet field conditions are allowed.

Submit Contractor-proposed TCP changes, signed and sealed by a licensed professional engineer, for approval. The Engineer may develop, sign, and seal Contractor-proposed changes. Changes must conform to guidelines established in the TMUTCD using approved products from the Department's Compliant Work Zone Traffic Control Device List.

Maintain traffic control devices by taking corrective action when notified. Corrective actions include, but are not limited to, cleaning, replacing, straightening, covering, and removing devices. Maintain the devices such that they are properly positioned and spaced, legible, and have retroreflective characteristics that meet requirements day or night and in all weather conditions.

The Engineer may authorize or direct in writing the removal or relocation of project limit advance warning signs. When project limit advance warning signs are removed before final acceptance, provide traffic control in accordance with the TMUTCD for minor operations as approved.

Remove all traffic control devices upon completion of the work as shown on the plans or as directed.

3. MEASUREMENT

Barricades, Signs, and Traffic Handling will be measured by the month. Law enforcement personnel with patrol vehicles will be measured by the hour for each person.

4. PAYMENT

4.1. **Barricades, Signs, and Traffic Handling.** Except for Contracts with callout work and work orders, the work performed, and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Barricades, Signs, and Traffic Handling." This price is full compensation for installation, maintenance, adjustments, replacements, removal, materials, equipment, labor, tools, and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under

“Measurement” will be paid for at the unit price bid for “Barricades, Signs, and Traffic Handling.” This price is full compensation for installation, maintenance, adjustments, replacements, removal, materials, equipment, labor, tools, and incidentals.

When the plans establish pay items for particular work in the TCP, that work will be measured and paid under pertinent Items.

- 4.1.1. **Initiation of Payment.** Payment for this Item will begin on the first estimate after barricades, signs, and traffic handling devices have been installed in accordance with the TCP and construction has begun.
- 4.1.2. **Paid Months.** Monthly payment will be made each succeeding month for this Item provided the barricades, signs, and traffic handling devices have been installed and maintained in accordance with the TCP until the Contract amount has been paid.

If, within the time frame established by the Engineer, the Contractor fails to provide or properly maintain signs and barricades in compliance with the Contract requirements, as determined by the Engineer, the Contractor will be considered in noncompliance with this Item. No payment will be made for the months in question, and the total final payment quantity will be reduced by the number of months the Contractor was in noncompliance.
- 4.1.3. **Maximum Total Payment Before Acceptance.** The total payment for this Item will not exceed 10% of the total Contract amount before final acceptance in accordance with Article 5.12., “Final Acceptance.” The remaining balance will be paid in accordance with Section 502.4.1.5., “Balance Due.”
- 4.1.4. **Total Payment Quantity.** The quantity paid under this Item will not exceed the total quantity shown on the plans except as modified by change order and as adjusted by Section 502.4.1.2., “Paid Months.” An overrun of the plans quantity for this Item will not be allowed for approving designs; testing; material shortages; closed construction seasons; curing periods; establishment, performance, test, and maintenance periods; failure to complete the work in the number of months allotted; nor delays caused directly or indirectly by requirements of the Contract.
- 4.1.5. **Balance Due.** The remaining unpaid months of barricades less non-compliance months will be paid on final acceptance of the project, if all work is complete and accepted in accordance with Article 5.12., “Final Acceptance.”
- 4.1.6. **Contracts with Callout Work and Work Orders.** The work performed and the materials furnished with this Item and measured as provided under “Measurement,” will be considered subsidiary to pertinent Items, except for federally funded Contracts.

- 4.2. **Law Enforcement Personnel.** The work performed and materials furnished in accordance with this Item and measured as provided under “Measurement,” will be paid by Contractor force account for “Law Enforcement Personnel.” This price is full compensation for furnishing all labor, materials, supplies, equipment, patrol vehicle, fees, and incidentals necessary to complete the work as directed.

Temporary Erosion, Sedimentation, and Environmental Controls

1. DESCRIPTION

Install, maintain, and remove erosion, sedimentation, and environmental control measures to prevent or reduce the discharge of pollutants in accordance with the Storm Water Pollution Prevention Plan (SWP3) on the plans and the Texas Pollutant Discharge Elimination System (TPDES) General Permit TXR150000. Control measures are defined as Best Management Practices used to prevent or reduce the discharge of pollutants. Control measures include, but are not limited to, rock filter dams, temporary pipe slope drains, temporary paved flumes, construction exits, earthwork for erosion control, pipe, construction perimeter fence, sandbags, temporary sediment control fence, biodegradable erosion control logs, vertical tracking, temporary or permanent seeding, and other measures. Erosion and sediment control devices must be selected from the *Erosion Control Approved Products* or *Sediment Control Approved Products* lists. Perform work in a manner to prevent degradation of receiving waters, facilitate project construction, and comply with applicable federal, state, and local regulations. Ensure the installation and maintenance of control measures is performed in accordance with the manufacturers or designer's specifications.

Provide the Contractor Certification of Compliance before performing SWP3 or soil disturbing activities. By signing the Contractor Certification of Compliance, the Contractor certifies they have read and understand the requirements applicable to this project pertaining to the SWP3, the plans, and the TPDES General Permit TXR150000. The Contractor is responsible for any penalties associated with non-performance of installation or maintenance activities required for compliance. Ensure the most current version of the certificate is executed for this project.

2. MATERIALS

Furnish materials in accordance with the following:

- Item 161, "Compost,"
- Item 432, "Riprap," and
- Item 556, "Pipe Underdrains."

2.1. *Rock Filter Dams.*

2.1.1. **Aggregate.** Furnish aggregate with approved hardness, durability, cleanliness, and resistance to crumbling, flaking, and eroding. Provide the following:

- Types 1, 2, and 4 Rock Filter Dams. Use 3 to 6 in. aggregate.
- Type 3 Rock Filter Dams. Use 4 to 8 in. aggregate.

2.1.2. **Wire.** Provide minimum 20-gauge galvanized wire for the steel wire mesh and tie wires for Types 2 and 3 rock filter dams. Type 4 dams require:

- a double-twisted, hexagonal weave with a nominal mesh opening of 2-1/2 x 3-1/4 in.
- minimum 0.0866 in. steel wire for netting.
- minimum 0.1063 in. steel wire for selvages and corners; and
- minimum 0.0866 in. for binding or tie wire.

2.1.3. **Sandbag Material.** Furnish sandbags meeting Section 506.2.8., "Sandbags," except that any gradation of aggregate may be used to fill the sandbags.

2.2. **Temporary Pipe Slope Drains.** Provide corrugated metal pipe, polyvinyl chloride (PVC) pipe, flexible tubing, watertight connection bands, grommet materials, prefabricated fittings, and flared entrance sections that conform to the plans. Recycled and other materials meeting these requirements are allowed if approved.

Furnish concrete in accordance with Item 432, "Riprap."

2.3. **Temporary Paved Flumes.** Furnish asphalt concrete, hydraulic cement concrete, or other comparable, non-erodible material that conforms to the plans. Provide rock or rubble with a minimum diameter of 6 in. and a maximum volume of 1/2 cu. ft. for the construction of energy dissipators.

2.4. **Construction Exits.** Provide materials that meet the details shown on the plans and this Section.

2.4.1. **Rock Construction Exit.** Provide crushed aggregate for long- and short-term construction exits. Furnish aggregates that are clean, hard, durable, and free from adherent coatings such as salt, alkali, dirt, clay, loam, shale, soft or flaky materials, and organic and injurious matter. Use 4- to 8-in. aggregate for Type 1. Use 2- to 4-in. aggregate for Type 3.

2.4.2. **Timber Construction Exit.** Furnish No. 2 quality or better railroad ties and timbers for long-term construction exits, free of large and loose knots and treated to control rot. Fasten timbers with nuts and bolts or lag bolts, of at least 1/2 in. diameter, unless otherwise shown on the plans or allowed. Provide plywood or pressed wafer board at least 1/2 in. thick for short-term exits.

2.4.3. **Foundation Course.** Provide a foundation course consisting of flexible base, bituminous concrete, hydraulic cement concrete, or other materials as shown on the plans or directed.

2.5. **Embankment for Erosion Control.** Provide rock, loam, clay, topsoil, or other earth materials that will form a stable embankment to meet the intended use.

2.6. **Pipe.** Provide pipe outlet material in accordance with Item 556, "Pipe Underdrains," and details shown on the plans.

2.7. *Construction Perimeter Fence.*

2.7.1. **Posts.** Provide essentially straight wood or steel posts that are at least 60 in. long. Furnish soft wood posts with a minimum diameter of 3 in. or use nominal 2 x 4 in. boards. Furnish hardwood posts with a minimum cross-section of 1-1/2 x 1-1/5 in. Furnish T- or L-shaped steel posts with a minimum weight of 1.25 lb. per foot.

2.7.2. **Fence.** Provide orange construction fencing as approved.

2.7.3. **Fence Wire.** Provide 14 gauge or larger galvanized smooth or twisted wire. Provide 16 gauge or larger tie wire.

2.7.4. **Flagging.** Provide brightly colored flagging that is fade-resistant and at least 3/4 in. wide to provide maximum visibility both day and night.

2.7.5. **Staples.** Provide staples with a crown at least 1/2 in. wide and legs at least 1/2 in. long.

2.7.6. **Used Materials.** Previously used materials meeting the applicable requirements may be used if approved.

2.8. **Sandbags.** Provide sandbag material of polypropylene, polyethylene, or polyamide woven fabric with a minimum unit weight of 4 oz. per square yard, a Mullen burst strength exceeding 300 psi, and an ultraviolet stability exceeding 70%.

Use natural coarse sand or manufactured sand meeting the gradation given in Table 1 to fill sandbags. Filled sandbags must be 24 to 30 in. long, 16 to 18 in. wide, and 6 to 8 in. thick.

Table 1
Sand Gradation

Sieve Size	Retained (% by Weight)
#4	Maximum 3%
#100	Minimum 80%
#200	Minimum 95%

Aggregate may be used instead of sand for situations where sandbags are not adjacent to traffic. The aggregate size must not exceed 3/8 in.

2.9. **Temporary Sediment Control Fence.** Provide a net-reinforced fence using woven geo-textile fabric. Logos visible to the traveling public will not be allowed.

2.9.1. **Fabric.** Provide fabric materials in accordance with [DMS-6230](#), "Temporary Sediment Control Fence Fabric."

2.9.2. **Posts.** Provide essentially straight wood or steel posts with a minimum length of 48 in., unless otherwise shown on the plans. Furnish soft wood posts at least 3 in. in diameter or use nominal 2 x 4 in. boards. Furnish hardwood posts with a minimum cross-section of 1-1/2 x 1-1/2 in. Furnish T- or L-shaped steel posts with a minimum weight of 1.25 lb. per foot.

2.9.3. **Net Reinforcement.** Provide net reinforcement of at least 12.5 gauge (SWG) galvanized welded wire mesh, with a maximum opening size of 2 x 4 in., at least 24 in. wide, unless otherwise shown on the plans.

2.9.4. **Staples.** Provide staples with a crown at least 3/4 in. wide and legs 1/2 in. long.

2.9.5. **Used Materials.** Use recycled material meeting the applicable requirements if approved.

2.10. *Biodegradable Erosion Control Logs.*

2.10.1. **Core Material.** Furnish core material that is biodegradable or recyclable. Use compost, mulch, aspen excelsior wood fibers, chipped site vegetation, agricultural rice or wheat straw, coconut fiber, 100% recyclable fibers, or any other acceptable material unless specifically called out on the plans. Permit no more than 5% of the material to escape from the containment mesh. Furnish compost meeting the requirements of Item 161, "Compost."

2.10.2. **Containment Mesh.** Furnish containment mesh that is 100% biodegradable, photodegradable, or recyclable such as burlap, twine, UV photodegradable plastic, polyester, or any other acceptable material.

Furnish biodegradable or photodegradable containment mesh when log will remain in place as part of a vegetative system.

Furnish recyclable containment mesh for temporary installations.

2.10.3. **Size.** Furnish biodegradable erosion control logs with diameters shown on the plans or as directed. Stuff containment mesh densely so logs do not deform.

3. *QUALIFICATIONS, TRAINING, AND EMPLOYEE REQUIREMENTS*

3.1. **Contractor Responsible Person Environmental (CRPE) Qualifications and Responsibilities.** Provide and designate in writing at the preconstruction conference a CRPE and alternate CRPE who have overall responsibility for the storm water management program. The CRPE will implement storm water and erosion

control practices; will oversee and observe storm water control measure monitoring and management; will monitor the project site daily and produce daily monitoring reports if there are BMPs in place or soil disturbing activities are evident to ensure compliance with the SWP3 and TPDES General Permit TXR150000. During time suspensions when work is not occurring or on contract non-workdays, daily inspections are not required unless a rain event has occurred. The CRPE will provide recommendations on how to improve the effectiveness of control measures. Attend the Department's preconstruction conference for the project. Ensure training is completed as identified in Section 506.3.3., "Training," by all applicable personnel before employees work on the project. Document and submit a list, signed by the CRPE, of all applicable Contractor and subcontractor employees who have completed the training. Include the employee's name, the training course name, and date the employee completed the training. Provide the most current list at the preconstruction conference or before SWP3 or soil disturbing activities. Update the list as needed and provide the updated list when updated.

3.2. **Contractor Superintendent Qualifications and Responsibilities.** Provide a superintendent that is competent, has experience with and knowledge of storm water management, and is knowledgeable of the requirements and the conditions of the TPDES General Permit TXR150000. The superintendent will manage and oversee the day-to-day operations and activities at the project site; work with the CRPE to provide effective storm water management at the project site; represent and act on behalf of the Contractor; and attend the Department's preconstruction conference for the project.

3.3. **Training.** All Contractor and subcontractor employees involved in soil disturbing activities, small or large structures, storm water control measures, and seeding activities must complete training as prescribed by the Department.

4. CONSTRUCTION

4.1. **Contractor Responsibilities.** Implement the SWP3 for the project site in accordance with the plans and specifications, TPDES General Permit TXR150000, and as directed. Coordinate storm water management with all other work on the project. Develop and implement an SWP3 for project-specific material supply plants within and outside of the Department's right of way in accordance with the specific or general storm water permit requirements. Prevent water pollution from storm water associated with construction activity from entering any surface water or private property on or adjacent to the project site.

4.2. **Implementation.** The CRPE, or alternate CRPE, must be accessible by phone and able to respond to project-related storm water management or other environmental emergencies 24 hr. per day.

4.2.1. **Commencement.** Implement the SWP3 as shown and as directed. Contractor-proposed recommendations for changes will be allowed as approved. Conform to the established guidelines in the TPDES General Permit TXR150000 to make changes. Do not implement changes until approval has been received and changes have been incorporated into the plans. Minor adjustments to meet field conditions are allowed and will be recorded in the SWP3.

4.2.2. **Phasing.** Implement control measures before the commencement of activities that result in soil disturbance. Phase and minimize the soil disturbance to the areas shown on the plans. Coordinate temporary control measures with permanent control measures and all other work activities on the project to assure economical, effective, safe, and continuous water pollution prevention. Provide control measures that are appropriate to the construction means, methods, and sequencing allowed by the Contract. Exercise precaution throughout the life of the project to prevent pollution of ground waters and surface waters. Schedule and perform clearing and grubbing operations so that stabilization measures will follow immediately thereafter if project conditions permit. Bring all grading sections to final grade as soon as possible and implement temporary and permanent control measures at the earliest time possible. Implement temporary control measures when required by the TPDES General Permit TXR150000 or otherwise necessitated by project conditions.

Do not prolong final grading and shaping. Preserve vegetation where possible throughout the project, and minimize clearing, grubbing, and excavation within stream banks, bed, and approach sections.

4.3. *General.*

4.3.1. **Temporary Alterations or Control Measure Removal.** Altering or removal of control measures is allowed when control measures are restored within the same working day.

4.3.2. **Stabilization.** Initiate stabilization for disturbed areas no more than 14 days after the construction activities in that portion of the site have temporarily or permanently ceased. Establish a uniform vegetative cover or use another stabilization practice in accordance with the TPDES General Permit TXR150000.

4.3.3. **Finished Work.** Remove and dispose of all temporary control measures upon acceptance of vegetative cover or other stabilization practice unless otherwise directed. Complete soil disturbing activities and establish a uniform perennial vegetative cover. A project will not be considered for acceptance until a vegetative cover of 70% density of existing adjacent undisturbed areas is obtained or equivalent permanent stabilization is obtained in accordance with the TPDES General Permit TXR150000. An exception will be allowed in arid areas as defined in the TPDES General Permit TXR150000.

4.3.4. **Restricted Activities and Required Precautions.** Do not discharge onto the ground or surface waters any pollutants such as chemicals, raw sewage, fuels, lubricants, coolants, hydraulic fluids, bitumens, or any other petroleum product. Operate and maintain equipment on-site to prevent actual or potential water pollution. Manage, control, and dispose of litter on-site such that no adverse impacts to water quality occur. Prevent dust from creating a potential or actual unsafe condition, public nuisance, or condition endangering the value, utility, or appearance of any property. Wash out concrete trucks only as described in the TPDES General Permit TXR150000. Use appropriate controls to minimize the offsite transport of suspended sediments and other pollutants if it is necessary to pump or channel standing water (i.e., dewatering). Prevent discharges that would contribute to a violation of Edwards Aquifer Rules, water quality standards, the impairment of a listed water body, or other state or federal law.

4.4. **Installation, Maintenance, and Removal Work.** Perform work in accordance with the SWP3, according to manufacturers' guidelines, and in accordance with the TPDES General Permit TXR150000. Install and maintain the integrity of temporary erosion and sedimentation control devices to accumulate silt and debris until soil disturbing activities are completed and permanent erosion control features are in place, or the disturbed area has been adequately stabilized as approved.

The Department will inspect and document the condition of the control measures at the frequency shown on the plans and will provide the Construction SWP3 Field Inspection and Maintenance Reports to the Contractor. Make corrections as soon as possible before the next anticipated rain event or within 7 calendar days after being able to enter the worksite for each control measure. The only acceptable reason for not accomplishing the corrections with the time frame specified is when site conditions are "Too Wet to Work." Take immediate action if a correction is deemed critical as directed. When corrections are not made within the established time frame, all work will cease on the project and time charges will continue while the control measures are brought into compliance. Commence work once the Engineer reviews and documents the project is in compliance. Commencing work does not release the Contractor of the liability for noncompliance of the SWP3, plans, or TPDES General Permit TXR150000.

The Engineer may limit the disturbed area if the Contractor cannot control soil erosion and sedimentation resulting from the Contractor's operations. Implement additional controls as directed.

Remove devices upon approval or as directed. Finish-grade and dress the area upon removal. Stabilize disturbed areas in accordance with the permit, and as shown on the plans or directed. Materials removed are considered consumed by the project. Retain ownership of stockpiled material and remove it from the project when new installations or replacements are no longer required.

4.4.1. **Rock Filter Dams for Erosion Control.** Remove trees, brush, stumps, and other objectionable material that may interfere with the construction of rock filter dams. Place sandbags as a foundation when required or at the Contractor's option.

Place the aggregate to the lines, height, and slopes specified, without undue voids for Types 1, 2, 3, and 5. Place the aggregate on the mesh and then fold the mesh at the upstream side over the aggregate and secure it to itself on the downstream side with wire ties, or hog rings for Types 2 and 3, or as directed. Place rock filter dams perpendicular to the flow of the stream or channel unless otherwise directed. Construct filter dams according to the following criteria unless otherwise shown on the plans:

4.4.1.1. *Type 1 (Non-Reinforced).*

- **Height.** At least 18 in. measured vertically from existing ground to top of filter dam.
- **Top Width.** At least 2 ft.
- **Slopes.** No steeper than 2:1.

4.4.1.2. *Type 2 (Reinforced).*

- **Height.** At least 18 in. measured vertically from existing ground to top of filter dam.
- **Top Width.** At least 2 ft.
- **Slopes.** No steeper than 2:1.

4.4.1.3. *Type 3 (Reinforced).*

- **Height.** At least 36 in. measured vertically from existing ground to top of filter dam.
- **Top Width.** At least 2 ft.
- **Slopes.** No steeper than 2:1.

4.4.1.4. **Type 4 (Sack Gabions).** Unfold sack gabions and smooth out kinks and bends. Connect the sides by lacing in a single loop–double loop pattern on 4- to 5-in. spacing for vertical filling. Pull the end lacing rod at one end until tight, wrap around the end, and twist 4 times. Fill with stone at the filling end, pull the rod tight, cut the wire with approximately 6 in. remaining, and twist wires 4 times.

Place the sack flat in a filling trough, fill with stone, connect sides, and secure ends as described above for horizontal filling.

Lift and place without damaging the gabion. Shape sack gabions to existing contours.

4.4.1.5. **Type 5.** Provide rock filter dams as shown on the plans.

4.4.2. **Temporary Pipe Slope Drains.** Install pipe with a slope as shown on the plans or as directed. Construct embankment for the drainage system in 8-in. lifts to the required elevations. Hand-tamp the soil around and under the entrance section to the top of the embankment as shown on the plans or as directed. Form the top of the embankment or earth dike over the pipe slope drain at least 1 ft. higher than the top of the inlet pipe at all points. Secure the pipe with hold-downs or hold-down grommets spaced a maximum of 10 ft. on center. Construct the energy dissipaters or sediment traps as shown on the plans or as directed. Construct the sediment trap using concrete or rubble riprap in accordance with Item 432, "Riprap," when designated on the plans.

4.4.3. **Temporary Paved Flumes.** Construct paved flumes as shown on the plans or as directed. Provide excavation and embankment (including compaction of the subgrade) of material to the dimensions shown on the plans unless otherwise indicated. Install a rock or rubble riprap energy dissipater, constructed from the materials specified above, to a minimum depth of 9 in. at the flume outlet to the limits shown on the plans or as directed.

4.4.4. **Construction Exits.** Prevent traffic from crossing or exiting the construction site or moving directly onto a public roadway, alley, sidewalk, parking area, or other right of way areas other than at the location of construction exits when tracking conditions exist. Construct exits for either long- or short-term use.

4.4.4.1. **Long-Term.** Place the exit over a foundation course as required. Grade the foundation course or compacted subgrade to direct runoff from the construction exits to a sediment trap as shown on the plans or as directed. Construct exits with a width of at least 14 ft. for one-way and 20 ft. for two-way traffic for the full width of the exit, or as directed.

4.4.4.1.1. **Type 1.** Construct to a depth of at least 8 in. using crushed aggregate as shown on the plans or as directed.

4.4.4.1.2. **Type 2.** Construct using railroad ties and timbers as shown on the plans or as directed.

4.4.4.2. *Short-Term.*

4.4.4.2.1. **Type 3.** Construct using crushed aggregate, plywood, or wafer board. This type of exit may be used for daily operations where long-term exits are not practical.

4.4.4.2.2. **Type 4.** Construct as shown on the plans or as directed.

4.4.5. **Earthwork for Erosion Control.** Perform excavation and embankment operations to minimize erosion and to remove collected sediments from other erosion control devices.

4.4.5.1. **Excavation and Embankment for Erosion Control Features.** Place earth dikes, swales, or combinations of both along the low crown of daily lift placement, or as directed, to prevent runoff spillover. Place swales and dikes at other locations as shown on the plans or as directed to prevent runoff spillover or to divert runoff. Construct cuts with the low end blocked with undisturbed earth to prevent erosion of hillsides. Construct sediment traps at drainage structures in conjunction with other erosion control measures as shown on the plans or as directed.

Create a sediment basin, where required, providing 3,600 cu. ft. of storage per acre drained, or equivalent control measures for drainage locations that serve an area with 10 or more disturbed acres at one time, not including offsite areas.

4.4.5.2. **Excavation of Sediment and Debris.** Remove sediment and debris when accumulation affects the performance of the devices, after a rain, and when directed.

4.4.6. **Construction Perimeter Fence.** Construct, align, and locate fencing as shown on the plans or as directed.

4.4.6.1. **Installation of Posts.** Embed posts 18 in. deep or adequately anchor in rock, with a spacing of 8 to 10 ft.

4.4.6.2. **Wire Attachment.** Attach the top wire to the posts at least 3 ft. from the ground. Attach the lower wire midway between the ground and the top wire.

4.4.6.3. **Flag Attachment.** Attach flagging to both wire strands midway between each post. Use flagging at least 18 in. long. Tie flagging to the wire using a square knot.

4.4.7. **Sandbags for Erosion Control.** Construct a berm or dam of sandbags that will intercept sediment-laden storm water runoff from disturbed areas, create a retention pond, detain sediment, and release water in sheet flow. Fill each bag with sand so that at least the top 6 in. of the bag is unfilled to allow for proper tying of the open end. Place the sandbags with their tied ends in the same direction. Offset subsequent rows of sandbags 1/2 the length of the preceding row. Place a single layer of sandbags downstream as a secondary debris trap. Place additional sandbags as necessary or as directed for supplementary support to berms or dams of sandbags or earth.

4.4.8. **Temporary Sediment-Control Fence.** Provide temporary sediment-control fence near the downstream perimeter of a disturbed area to intercept sediment from sheet flow. Incorporate the fence into erosion-control measures used to control sediment in areas of higher flow. Install the fence as shown on the plans, as specified in this Section, or as directed.

4.4.8.1. **Installation of Posts.** Embed posts at least 18 in. deep, or adequately anchor, if in rock, with a spacing of 6 to 8 ft. and install on a slight angle toward the runoff source.

4.4.8.2. **Fabric Anchoring.** Dig trenches along the uphill side of the fence to anchor 6 to 8 in. of fabric. Provide a minimum trench cross-section of 6 x 6 in. Place the fabric against the side of the trench and align approximately 2 in. of fabric along the bottom in the upstream direction. Backfill the trench, then hand-tamp.

4.4.8.3. **Fabric and Net Reinforcement Attachment.** Attach the reinforcement to wooden posts with staples, or to steel posts with T-clips, in at least 4 places equally spaced unless otherwise shown on the plans. Sewn

vertical pockets may be used to attach reinforcement to end posts. Fasten the fabric to the top strand of reinforcement by hog rings or cord every 15 in. or less.

4.4.8.4. **Fabric and Net Splices.** Locate splices at a fence post with a minimum lap of 6 in. attached in atleast 6 places equally spaced unless otherwise shown on the plans. Do not locate splices in concentrated flow areas.

Requirements for installation of used temporary sediment-control fence include the following:

- fabric with minimal or no visible signs of biodegradation (weak fibers),
- fabric without excessive patching (more than 1 patch every 15 to 20 ft.),
- posts without bends, and
- backing without holes.

4.4.9. **Biodegradable Erosion Control Logs.** Install biodegradable erosion control logs near the downstream perimeter of a disturbed area to intercept sediment from sheet flow. Incorporate the biodegradable erosion control logs into the erosion measures used to control sediment in areas of higher flow. Install, align, and locate the biodegradable erosion control logs as specified below, as shown on the plans, or as directed.

Secure biodegradable erosion control logs in a method adequate to prevent displacement as a result of normal rain events, prevent damage to the logs, and as approved, such that flow is not allowed under the logs. Temporarily removing and replacing biodegradable erosion logs as to facilitate daily work is allowed at the Contractor's expense.

4.4.10. **Vertical Tracking.** Perform vertical tracking on slopes to temporarily stabilize soil. Provide equipment with a track undercarriage capable of producing a linear soil impression measuring a minimum of 12 in. long \times 2 to 4 in. wide \times 1/2 to 2 in. deep. Do not exceed 12 in. between track impressions. Install continuous linear track impressions where the 12 in. length impressions are perpendicular to the slope. Vertical tracking is required on projects where soil disturbing activities have occurred unless otherwise approved.

4.5. **Monitoring and Documentation.** Monitor the control measures on a daily basis as long as there are BMPs in place and/or soil disturbing activities are evident to ensure compliance with the SWP3 and TPDES General Permit TXR150000. During time suspensions when work is not occurring or contract non-workdays, daily inspections are not required unless a rain event has occurred. Monitoring will consist of, but is not limited to, observing, inspecting, and documenting site locations with control measures and discharge points to provide maintenance and inspection of controls as described in the SWP3. Keep written records of daily monitoring. Document in the daily monitoring report the control measure condition, the date of inspection, required corrective actions, responsible person for making the corrections, and the date corrective actions were completed. Maintain records of all monitoring reports at the project site or at an approved place. Provide copies within 7 days. Together, the CRPE and an Engineer's representative will complete the Construction Stage Gate Checklist on a periodic basis as directed.

5. MEASUREMENT

5.1. **Rock Filter Dams.** Installation or removal of rock filter dams will be measured by the foot or by the cubic yard. The measured volume will include sandbags, when used.

5.1.1. **Linear Measurement.** When rock filter dams are measured by the foot, measurement will be along the centerline of the top of the dam.

5.1.2. **Volume Measurement.** When rock filter dams are measured by the cubic yard, measurement will be based on the volume of rock computed by the method of average end areas.

5.1.2.1. **Installation.** Measurement will be made in final position.

5.1.2.2. **Removal.** Measurement will be made at the point of removal.

5.2. **Temporary Pipe Slope Drains.** Temporary pipe slope drains will be measured by the foot.

5.3. **Temporary Paved Flumes.** Temporary paved flumes will be measured by the square yard of surface area. The measured area will include the energy dissipater at the flume outlet.

5.4. **Construction Exits.** Construction exits will be measured by the square yard of surface area.

5.5. *Earthwork for Erosion and Sediment Control.*

5.5.1. **Equipment and Labor Measurement.** Equipment and labor used will be measured by the actual number of hours the equipment is operated and the labor is engaged in the work.

5.5.2. *Volume Measurement.*

5.5.2.1. **In Place.**

5.5.2.1.1. **Excavation.** Excavation will be measured by the cubic yard in its original position and the volume computed by the method of average end areas.

5.5.2.1.2. **Embankment.** Embankment will be measured by the cubic yard in its final position by the method of average end areas. The volume of embankment will be determined between:

- the original ground surfaces or the surface upon that the embankment is to be constructed for the feature and
- the lines, grades, and slopes of the accepted embankment for the feature.

5.5.2.2. **In Vehicles.** Excavation and embankment quantities will be combined and paid for under "Earthwork (Erosion and Sediment Control, In Vehicle)." Excavation will be measured by the cubic yard in vehicles at the point of removal. Embankment will be measured by the cubic yard in vehicles measured at the point of delivery. Shrinkage or swelling factors will not be considered in determining the calculated quantities.

5.6. **Construction Perimeter Fence.** Construction perimeter fence will be measured by the foot.

5.7. **Sandbags for Erosion Control.** Sandbags will be measured as each sandbag or by the foot along the top of sandbag berms or dams.

5.8. **Temporary Sediment-Control Fence.** Installation or removal of temporary sediment-control fence will be measured by the foot.

5.9. **Biodegradable Erosion Control Logs.** Installation or removal of biodegradable erosion control logs will be measured by the foot along the centerline of the top of the control logs.

5.10. **Vertical Tracking.** Vertical tracking will not be measured or paid for directly but is considered subsidiary to this item.

6. PAYMENT

The following will not be paid for directly but are subsidiary to pertinent items:

- erosion-control measures for Contractor project-specific locations (PSLs) inside and outside the right of way (such as construction and haul roads, field offices, equipment and supply areas, plants, and material sources).
- removal of litter unless a separate pay item is shown on the plans.
- repair to devices and features damaged by Contractor operations.
- added measures and maintenance needed due to negligence, carelessness, lack of maintenance, and failure to install permanent controls.

- removal and reinstallation of devices and features needed for the convenience of the Contractor.
- finish grading and dressing upon removal of the device; and
- minor adjustments including but not limited to plumbing posts, reattaching fabric, minor grading to maintain slopes on an erosion embankment feature or moving small numbers of sandbags.

Stabilization of disturbed areas will be paid for under pertinent Items except vertical tacking which is subsidiary.

Furnishing and installing pipe for outfalls associated with sediment traps and ponds will not be paid for directly but is subsidiary to the excavation and embankment under this Item.

6.1. **Rock Filter Dams.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid as follows:

6.1.1. **Installation.** Installation will be paid for as "Rock Filter Dams (Install)" of the type specified. This price is full compensation for furnishing and operating equipment, finish backfill and grading, lacing, proper disposal, labor, materials, tools, and incidentals.

6.1.2. **Removal.** Removal will be paid for as "Rock Filter Dams (Remove)." This price is full compensation for furnishing and operating equipment, proper disposal, labor, materials, tools, and incidentals.

When the Engineer directs that the rock filter dam installation or portions thereof be replaced, payment will be made at the unit price bid for "Rock Filter Dams (Remove)" and for "Rock Filter Dams (Install)" of the type specified. This price is full compensation for furnishing and operating equipment, finish backfill and grading, lacing, proper disposal, labor, materials, tools, and incidentals.

6.2. **Temporary Pipe Slope Drains.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Temporary Pipe Slope Drains" of the size specified. This price is full compensation for furnishing materials, removal, and disposal, furnishing and operating equipment, labor, tools, and incidentals.

Removal of temporary pipe slope drains will not be paid for directly but is subsidiary to the installation Item. When the Engineer directs that the pipe slope drains installation or portions thereof be replaced, payment will be made at the unit price bid for "Temporary Pipe Slope Drains" of the size specified, which is full compensation for the removal and reinstallation of the pipe drain.

Earthwork required for the pipe slope drain installation, including construction of the sediment trap, will be measured, and paid for under "Earthwork for Erosion and Sediment Control."

Riprap concrete or stone, when used as an energy dissipater or as a stabilized sediment trap, will be measured and paid for in accordance with Item 432, "Riprap."

6.3. **Temporary Paved Flumes.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Temporary Paved Flume (Install)" or "Temporary Paved Flume (Remove)." This price is full compensation for furnishing and placing materials, removal and disposal, equipment, labor, tools, and incidentals.

When the Engineer directs that the paved flume installation or portions thereof be replaced, payment will be made at the unit prices bid for "Temporary Paved Flume (Remove)" and "Temporary Paved Flume (Install)." These prices are full compensation for the removal and replacement of the paved flume and for equipment, labor, tools, and incidentals.

Earthwork required for the paved flume installation, including construction of a sediment trap, will be measured, and paid for under "Earthwork for Erosion and Sediment Control."

6.4. **Construction Exits.** Contractor-required construction exits from off right of way locations or on-right of way PSLs will not be paid for directly but are subsidiary to pertinent Items.

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" for construction exits needed on right of way access to work areas required by the Department will be paid for at the unit price bid for "Construction Exits (Install)" of the type specified or "Construction Exits (Remove)." This price is full compensation for furnishing and placing materials, excavating, removal and disposal, cleaning vehicles, labor, tools, and incidentals.

When the Engineer directs that a construction exit or portion thereof be removed and replaced, payment will be made at the unit prices bid for "Construction Exit (Remove)" and "Construction Exit (Install)" of the type specified. These prices are full compensation for the removal and replacement of the construction exit and for equipment, labor, tools, and incidentals.

Construction of sediment traps used in conjunction with the construction exit will be measured and paid for under "Earthwork for Erosion and Sediment Control."

6.5. Earthwork for Erosion and Sediment Control.

6.5.1. **Initial Earthwork for Erosion and Sediment Control.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Excavation (Erosion and Sediment Control, In Place)," "Embankment (Erosion and Sediment Control, In Place)," "Excavation (Erosion and Sediment Control, In Vehicle)," "Embankment (Erosion and Sediment Control, (In Vehicle)," or "Earthwork (Erosion and Sediment Control, In Vehicle)."

This price is full compensation for excavation and embankment including hauling, disposal of material not used elsewhere on the project; embankments including furnishing material from approved sources and construction of erosion-control features; and equipment, labor, tools, and incidentals.

Sprinkling and rolling required by this Item will not be paid for directly but will be subsidiary to this Item.

6.5.2. **Maintenance Earthwork for Erosion and Sediment Control for Cleaning and Restoring Control Measures.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid under a Contractor Force Account Item from invoice provided to the Engineer.

This price is full compensation for excavation, embankment, and re-grading including removal of accumulated sediment in various erosion control installations as directed, hauling, and disposal of material not used elsewhere on the project; excavation for construction of erosion-control features; embankments including furnishing material from approved sources and construction of erosion-control features; and equipment, labor, tools, and incidentals.

Earthwork needed to remove and obliterate erosion-control features will not be paid for directly but is subsidiary to pertinent Items unless otherwise shown on the plans.

Sprinkling and rolling required by this Item will not be paid for directly but will be subsidiary to this Item.

6.6. **Construction Perimeter Fence.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Construction Perimeter Fence." This price is full compensation for furnishing and placing the fence; digging, fence posts, wire, and flagging; removal and disposal; and materials, equipment, labor, tools, and incidentals.

Removal of construction perimeter fence will not be paid for directly but is subsidiary to the installation Item. When the Engineer directs that the perimeter fence installation or portions thereof be removed and replaced, payment will be made at the unit price bid for "Construction Perimeter Fence," which is full compensation for the removal and reinstallation of the construction perimeter fence.

Item 508 Constructing Detours

1. DESCRIPTION

Construct and maintain detours. Remove detours when required.

2. MATERIALS

- 2.1. **Embankment.** Use roadway excavation for embankment material or use material from other approved sources.
- 2.2. **Temporary Drainage Pipe.** Furnish pipe required for temporary drainage in accordance with details shown on the plans or as directed. Pipe will become the property of the Contractor upon removal.
Temporary use of permanent pipe is allowable if the sequence of work permits. If pipe used temporarily is damaged so that it is not acceptable in accordance with applicable Items, it will not be acceptable for incorporation in the final project. The damaged pipe remains the property of the Contractor.
- 2.3. **Base and Surfacing.** Furnish base and surfacing materials in accordance with Items as shown on the plans.

3. CONSTRUCTION

Construct the detour at the locations and to the lines, grades, and typical sections shown on the plans or as directed, in accordance with pertinent Items. Maintain detours for public travel in a safe and passable condition. Public traffic safety and convenience is essential. Maintain detours in accordance with Section 7.2.4., "Public Safety and Convenience"; Article 7.17., "Contractor's Responsibility for Work"; and this Item.

Remove detours after they are no longer needed for traffic. Removed materials will become the property of the Contractor unless otherwise shown on the plans or directed. Dispose of the materials off the right of way, unless otherwise directed, in accordance with federal, state, and local requirements. If desired, dispose of materials by spreading along the adjacent roadway slopes if allowed. Salvage or stockpile in accordance with pertinent Items if embankment, base, or surfacing is to be reused within the roadway construction or stockpiled for future use.

4. MEASUREMENT

This Item will be measured by the square yard of pavement area, or surface area if not paved.

5. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Constructing Detours," for Constructing Detours by Type as shown on the plans, or for "Constructing Detours (EBSS)." Embankment Base Surface Separate (EBSS) is used when embankment, base, and surface are paid for separately.

The price bid for "Constructing Detours" or for Constructing Detours by Type as shown on the plans is full compensation for furnishing all materials required, including embankment, base, and surfacing; excavation and hauling of excavated material; sprinkling and compacting; furnishing, installing, and removing drainage structures; removal of detour; disposal of materials; and equipment, labor, tools, and incidentals.

The price bid for "Construction Detours (EBSS)" is full compensation for furnishing, installing, and removing drainage structures; removal of detour; disposal of materials; and equipment, labor, tools, and incidentals, except that embankment, flexible base, and surfacing will be measured and paid for in accordance with other pertinent Items.

Maintenance of detours constructed will not be paid for directly but will be subsidiary to this Item. Maintenance of pavement on detours that use existing pavement will be paid for in accordance with Article 7.17., "Contractor's Responsibility for Work."

When the plans require the base and surfacing to be removed and incorporated in the final roadway or stockpiled after use on the detour, the work will be performed, measured, and paid for in accordance with the pertinent Items shown for salvaging, replacing, or stockpiling materials.

All other items not specifically addressed in this Article will be paid for under pertinent Items unless otherwise shown on the plans.

One-Way Traffic Control

1. DESCRIPTION

Provide one-way traffic control using one of the methods shown on the plans.

2. WORK METHODS

- 2.1. **Flagger Control Method.** Furnish flaggers in accordance with the requirements of Article 7.2., "Safety," at all entry points to the work zone, to stop traffic. Furnish a Stop/Slow paddle that meets the requirements of the TMUTCD for each flagger. If desired, use Automated Flagger Assistance Devices if approved.
- 2.2. **Pilot Car Method.** Furnish a licensed driver and pilot vehicle with required signs attached. Furnish flaggers on each approach to the activity area to control traffic. Provide Stop/Slow paddles and signs that meet the requirements of the TMUTCD. Instruct drivers to follow the pilot vehicle and to not pass the cars ahead.
- 2.3. **Portable Traffic Signal Method.** Furnish, operate, and maintain new or used portable traffic signal units. Assure used units are in good working condition and are approved before use. A list of approved units can be found in the Department's *Compliant Work Zone Traffic Control Device List*. Units will remain the property of the Contractor.

3. MEASUREMENT

When shown on the plans as a bid item, this Item will be measured as follows:

- 3.1. **Flagger Control Method.** By the actual number of hours flaggers are engaged in flagging activities. Each flagger will be measured separately.
- 3.2. **Pilot Car Method.** By the actual number of hours of use for the combination of flaggers and pilot vehicle.
- 3.3. **Portable Traffic Signal Method.** By the month, including 2 units operated by a single controller set up and operational on the worksite.

4. PAYMENT

Unless otherwise shown on the plans, the work performed, and materials furnished in accordance with this Item will not be paid for directly but will be subsidiary to pertinent Items.

When shown on the plans as a bid item, the work performed, and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for the method specified. This price is full compensation for furnishing and operating equipment, pilot car, pilot vehicle driver, flaggers, signs, labor, tools, and incidentals. Payment for Portable Traffic Signal units and Portable Traffic Signals will be full compensation for the units, set up, relocating, removing, replacing parts, batteries, fuel, oil, and incidentals.

Portable Traffic Barrier

1. DESCRIPTION

Furnish, install, move, and remove portable traffic barrier.

2. MATERIALS

2.1. *Furnished by the Contractor.*

2.1.1. **Concrete.** Furnish barrier of the class of concrete shown and using materials that meet the pertinent requirements of the following items:

- Item 420, "Concrete Substructures"
- Item 421, "Hydraulic Cement Concrete"
- Item 424, "Precast Concrete Structural Members (Fabrication)"
- Item 440, "Reinforcement for Concrete"
- Item 442, "Metal for Structures"

2.1.2. **Steel.** Barrier sections will be furnished when shown on the plans. Barrier sections must meet the crash testing requirements of NCHRP 350 or MASH TL-3 or TL-4 specifications as per test matrix for Longitudinal Barriers.

2.1.3. **Concrete and Steel.** When barrier is to be furnished and retained by the Contractor, products from nonapproved sources or previously used products may be provided if the Contractor submits written certification that the barrier sections and materials substantially conform to the requirements of this Item. The Engineer may approve the use of the product if:

- the barrier sections substantially meet typical cross-section dimension requirements,
- there is no evidence of structural damage such as major spalls or cracks,
- the general condition of both the barrier sections and their connectors is acceptable,
- the barrier is new, and
- the barrier is being reused.

2.2. **Furnished by the Department.** Department-furnished barrier sections will be at a stockpile location, or an existing traffic barrier installation shown on the plans.

3. CONSTRUCTION

Notify the Engineer of the location of the casting site and the date on which the work will begin. Multi-project fabrication plants as defined in Item 424, "Precast Concrete Structural Members (Fabrication)," that produce concrete traffic barrier, except temporary barrier furnished and retained by the Contractor, must be qualified in accordance with [DMS-7350](#), "Qualification Procedure for Multi-Project Fabrication Plants of Precast Concrete Traffic Barrier." See the Department's MPL for approved fabricators. Construct barrier in accordance with Item 420, "Concrete Substructures," to the dimensions and cross-sections shown on the plans. Provide forms and cure concrete in accordance with Item 424, "Precast Concrete Structural Members (Fabrication)."

Provide a rough texture to the bottom surface of Single Slope or F-Shape barriers and to the top of Low-Profile barriers similar to a wood float finish.

Remove formwork after the concrete has reached sufficient strength to prevent physical damage to the member. Move barrier sections to a storage area and place them on blocking to prevent damage when they have attained sufficient strength to permit handling without causing visible damage.

Produce precast barrier to the tolerances given in Table 1 unless otherwise shown on the plans.

Table 1
Precast Barrier Tolerances

Dimension	Tolerance
Length	± 1 in.
Insert Placement	$\pm 1/2$ in.
Horizontal Alignment	$\pm 1/8$ in. per 10 feet of length
Deviation of Ends:	
Horizontal Skew	$\pm 1/4$ in.
Vertical Batter	$\pm 1/8$ in. per foot of depth

Install the barrier sections in accordance with the details shown on the plans or as directed.

After use, stockpile barrier sections and connection hardware that are to be retained by the Department at the location shown on the plans or as otherwise directed. Obtain assembly and installation information for the portable steel traffic barrier from the manufacturer and provide the Engineer with an installation and repair manual specific to the portable steel traffic barrier.

Repair or replace all traffic barrier or connecting hardware damaged by the Contractor's operations at the Contractor's expense.

Repair or replace any pavement damaged in the process of installing, moving, or removing barrier sections at the Contractor's expense.

4. MEASUREMENT

This Item will be measured by the foot based on the nominal lengths of the barrier sections.

5. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price as follows:

- For concrete barrier only, bid for "Portable Traffic Barrier" of the work category (Furnish and Install, Designated Source, Move, Stockpile, or Remove), shape (e.g., Single Slope, F-Shape, or Low Profile) and Type (1, 2, 3, etc.) of barrier sections specified. This price includes equipment, labor, tools, and incidentals.
- For concrete and steel barrier, bid for "Portable Traffic Barrier" of the work category (Furnish and Install, Designated Source, Move, Stockpile, or Remove), shape (e.g., Single Slope, F-Shape, or Low Profile) and Type (1, 2, 3, etc.) of barrier sections specified or "Steel". This price includes equipment, labor, tools, and incidentals.

- 5.1. **Furnish and install.** This price is full compensation for furnishing and installing barrier sections and connection hardware.
- 5.2. **Designated Source.** This price is full compensation for delivering and installing Department-furnished barrier sections and connection hardware from a designated source.
- 5.3. **Move.** This price is full compensation for moving barrier section installations on the project from one location to another (including disassembly and reassembly costs), moving barrier sections from an installation on the project to a temporary storage area (including disassembly costs), and moving barrier sections from a temporary storage area to an installation site on the project (including assembly costs).

- 5.4. **Stockpile.** This price is full compensation for removing barrier sections and connection hardware from the project and delivering to the Department stockpile area shown on the plans or as directed.
- 5.5. **Remove.** This price is full compensation for removing barrier and connection hardware from the project and retained by the Contractor.

Delineator and Object Marker Assemblies

1. DESCRIPTION

- **Installation.** Install delineator or object maker assembly.
- **Removal.** Remove delineator or object marker assembly.

2. MATERIALS

Furnish only new materials in accordance with details shown on the plans unless otherwise directed. The Engineer will sample in accordance with [Tex-725-I](#) or [Tex-737-I](#).

2.1.

Delineator and Object Marker Assemblies. Fabricate in accordance with the following:

- [DMS-8600](#), "Delineators, Object Markers, and Barrier Reflectors."
- [DMS-4400](#), "Flexible Delineator and Object Marker Posts (Embedded and Surface-Mount Types)."

2.2.

Wing Channel Post. Furnish material of the size shown on the plans. Supply a notarized original of the Form D-9-USA-1 (Department Form 1818) with supporting mill test report certifying that the base metal is in accordance with the following:

- ASTM A1011, SS Grade 50.
- ASTM A499.

Galvanize material in accordance with Item 445, "Galvanizing."

3. CONSTRUCTION

3.1.

Installation. Locate delineators and object markers as shown on the plans or as directed.

Locate barrier reflectors as shown on the plans or as directed and install in accordance with manufacturers recommendations.

Install winged channel post and flexible delineator posts to allow the reflector units and reflectorized panels to be installed at the specified height and orientation. Align post as shown or as directed.

Drive post plumb using a driving cap to prevent visible cross-section dimension distortion. Drill or drive a pilot hole when post cannot be driven without visibly distorting the cross-section dimension. Backfill pilot holes thoroughly by tamping in 6-in. lifts to grade.

Install surface-mount and other types of delineators and object markers in accordance with details shown on the plans.

Repair damaged galvanizing in accordance with Section 445.3.5., "Repairs." Install reflector units on wing channel posts after the posts have been erected.

3.2.

Removal. Remove post assemblies without damaging materials and salvage when indicated on the plans. Remove post to a minimum of 6 in. below finish grade. Stockpile salvaged materials at the location shown on the plans or as directed. Accept ownership of unsalvageable materials and dispose of in accordance with federal, state, and local requirements.

4. MEASUREMENT

Installation will be measured by each delineator or object marker assembly installed. When removal is specified on the plans to be a pay item, it will be measured by each delineator or object marker assembly removed.

This is a plans quantity measurement item. The quantity to be paid for is shown in the proposal unless modified by Article 9.2., "Plans Quantity Measurement." Additional measurements or calculations will be made if adjustments of quantities are required.

5. PAYMENT

The work performed and materials furnished in accordance with this item and measured as provided under "Measurement" will be paid for at the unit price bid for "Install Delineator Assemblies" or "Install Object Marker Assemblies" of the types and colors specified and for "Remove Delineator or Object Marker Assemblies."

5.1. **Installation.** This price is full compensation for furnishing and fabricating when required and installing and mounting the delineator or object marker assemblies including posts, adhesive or pads for surface mount assemblies, back plates, reflector units, fastening plates, brackets, bolts, nuts, and washers, and materials, equipment, labor, tools, and incidentals.

5.2. **Removal.** Unless otherwise shown on the plans, removal will not be paid for directly but is subsidiary to bid items of the Contract.

When removal is shown on the plans as a bid item, this price is full compensation for removal and disposal of delineator and object marker assemblies and for materials, equipment, labor, tools, and incidentals.

Retroreflectorized Pavement Markings

1. DESCRIPTION

Furnish and place retroreflectorized, non-retroreflectorized (shadow) and profile pavement markings.

2. MATERIALS

2.1. **Type I Marking Materials.** Furnish in accordance with [DMS-8220](#), "Hot Applied Thermoplastic."

Furnish pavement marking material used for Type I profile markings and shadow markings that have been approved by the Construction Division, and in accordance with [DMS-8220](#), "Hot Applied Thermoplastic."

2.2. **Type II Marking Materials.** Furnish in accordance with [DMS-8200](#), "Traffic Paint."

2.3. **Glass Traffic Beads.** Furnish drop-on glass beads in accordance with [DMS-8290](#), "Glass Traffic Beads" or as approved. Furnish a double-drop of Type II and Type III drop-on glass beads where each type of bead is applied separately in equal portions (by weight), unless otherwise approved. Apply the Type III beads before applying the Type II beads.

2.4. **Labeling.** Use clearly marked containers that indicate color, mass, material type, manufacturer, and batch number.

3. EQUIPMENT

3.1. **General Requirements.** Use equipment that:

- is maintained in satisfactory condition,
- meets or exceeds the requirements of the National Board of Fire Underwriters and the Texas Railroad Commission for this application,
- applies beads by an automatic bead dispenser attached to the pavement marking equipment in such a manner that the beads are dispensed uniformly and almost instantly upon the marking as the marking is being applied to the road surface. The bead dispenser must have an automatic cut-off control, synchronized with the cut-off of the pavement marking equipment,
- has an automatic cut-off device with manual operating capabilities to provide clean, square marking ends,
- is capable of producing the types and shapes of profiles specified, and
- can provide continuous mixing and agitation of the pavement marking material. The use of pans, aprons, or similar appliances which the die overruns will not be permitted for longitudinal striping applications.

Provide a hand-held thermometer capable of measuring the temperature of the marking material when applying Type I material.

When pavement markings are required to meet minimum retroreflectivity requirements on the plans:

- Use a mobile retroreflectometer approved by the Construction Division and certified by the Texas A&M Transportation Institute Mobile Retroreflectometer Certification Program.
- Use a portable retroreflectometer that:
 - uses 30-meter geometry and meets the requirements described in ASTM E1710.
 - has either an internal global positioning system (GPS) or the ability to be linked with an external GPS with a minimum accuracy rating of 16 ft. 5 in., in accordance with the circular error probability.

(CEP) method (CEP is the radius of the circle with its origin at a known position that encompasses 50% of the readings returned from the GPS instrument).

- can record and print the GPS location and retroreflectivity reading for each location where readings are taken.

3.2.

Material Placement Requirements. Use equipment that can place:

- at least 40,000 ft. of 4-in. solid or broken non-profile markings per working day at the specified thickness.
- at least 15,000 ft. of solid or broken profile pavement markings per working day at the specified thickness.
- linear non-profile markings up to 8 in. wide in a single pass.
- non-profile pavement markings other than solid or broken lines at an approved production rate.
- a centerline and no-passing barrier-line configuration consisting of 1 broken line and 2 solid lines at the same time to the alignment, spacing, and thickness for non-profile pavement markings shown on the plans.
- solid and broken lines simultaneously.
- white line from both sides.
- lines with clean edges, uniform cross-section with a tolerance of $\pm 1/8$ in. per 4 in. width, uniform thickness, and reasonably square ends.
- skip lines between 10 and 10-1/2 ft., a stripe-to-gap ratio of 10 to 30, and a stripe-gap cycle between 39-1/2 ft. and 40-1/2 ft., automatically.
- beads uniformly and almost instantly on the marking as the marking is being applied.
- beads uniformly during the application of all lines (each line must have an equivalent bead yield rate and embedment); and
- double-drop bead applications using both Type II and Type III beads from separate independent bead applicators, unless otherwise approved by the Engineer.

4. CONSTRUCTION

Place markings before opening to traffic unless short-term or work zone markings are allowed.

4.1.

General. Obtain approval for the sequence of work and estimated daily production. Minimize interference to roadway operations when placing markings on roadways open to traffic. Use traffic control as shown on the plans or as approved. Protect all markings placed under open-traffic conditions from traffic damage and disfigurement.

Establish guides to mark the lateral location of pavement markings as shown on the plans or as directed and have guide locations verified. Use material for guides that will not leave a permanent mark on the roadway.

Apply markings on pavement that is completely dry and passes the following tests:

- Type I Marking Application—Place a sample of Type I marking material on a piece of tarpaper placed on the pavement. Allow the material to cool to ambient temperature, and then inspect the underside of the tarpaper in contact with the pavement. Pavement will be considered dry if there is no condensation on the tarpaper.
- Type II Marking Application—Place a 1-sq. ft. piece of clear plastic on the pavement, and weight down the edges. The pavement is considered dry if, when inspected after 15 min., no condensation has occurred on the underside of the plastic.

Apply markings:

- that meet the requirements of [Tex-828-B](#),

- that meet minimum retroreflectivity requirements when specified on the plans (applies to Type I markings only),
- using widths and colors shown on the plans,
- at locations shown on the plans,
- in proper alignment with the guides without deviating from the alignment more than 1 in. per 200 ft. of roadway or more than 2 in. maximum,
- without abrupt deviations,
- free of blisters and with no more than 5% by area of holes or voids,
- with uniform cross-section, density, and thickness,
- with clean and reasonably square ends,
- that are retroreflectorized with drop-on glass beads, and
- using personnel skilled and experienced with installation of pavement markings.

Remove all applied markings that are not in alignment or sequence as stated on the plans, or in the specifications, at the Contractor's expense in accordance with Item 677, "Eliminating Existing Pavement Markings and Markers," except for measurement and payment.

4.2. **Surface Preparation.** Prepare surfaces in accordance with this Section unless otherwise shown on the plans.

4.2.1. **Cleaning for New Asphalt Surfaces and Retracing of All Surfaces.** Air blast or broom the pavement surface for new asphalt surfaces (less than 3 years old) and for retracing of all surfaces to remove loose material, unless otherwise shown on the plans. A sealer for Type I markings is not required unless otherwise shown on the plans.

4.2.2. **Cleaning for Old Asphalt and Concrete Surfaces (Excludes Retracing).** Clean old asphalt surfaces (more than 3 years old) and all concrete surfaces in accordance with Item 678, "Pavement Surface Preparation for Markings," to remove curing membrane, dirt, grease, loose and flaking existing construction markings, and other forms of contamination.

4.2.3. **Sealer for Type I Markings.** Apply a pavement sealer to old asphalt surfaces (more than 3 years old) and to all concrete surfaces before placing Type I markings on locations that do not have existing markings, unless otherwise approved. The pavement sealer may be either a Type II marking or an acrylic or epoxy sealer as recommended by the Type I marking manufacturer unless otherwise shown on the plans. Follow the manufacturer's directions for application of acrylic or epoxy sealers. Clean sealer that becomes dirty after placement by washing or in accordance with Section 666.4.2.1., "Cleaning for New Asphalt Surfaces and Retracing of All Surfaces," as directed. Place the sealer in the same configuration and color (unless clear) as the Type I markings unless otherwise shown on the plans.

4.3. **Application.** Apply markings during good weather unless otherwise directed. If markings are placed at Contractor option when inclement weather is impending and the markings are damaged by subsequent precipitation, the Contractor is responsible for all required replacement costs.

4.3.1. **Type I Markings.** Place the Type I marking after the sealer cures. Apply within the temperature limits recommended by the material manufacturer. Flush the spray head if spray application operations cease for 5 min or longer by spraying marking material into a pan or similar container until the material being applied is at the recommended temperature.

Apply on clean, dry pavements passing the moisture test described in Section 666.4.1., "General," and with a surface temperature above 50°F when measured in accordance with [Tex-829-B](#).

4.3.1.1. **Non-Profile Pavement Markings.** Apply Type I non-profile markings with a minimum thickness of:

- 0.100 in. (100 mils) for new markings and retracing water-based markings on surface treatments involving Item 316, "Seal Coat,"

- 0.060 in. (60 mils) for retracing on thermoplastic pavement markings, or
- 0.090 in. (90 mils) for all other Type I markings.

The maximum thickness for Type I non-profile markings is 0.180 in. (180 mils). Measure thickness for markings in accordance with [Tex-854-B](#) using the tape method.

4.3.1.2.

Profile Pavement Markings. Apply Type I profile markings with a minimum thickness of:

- 0.060 in. (60 mil) for edgeline markings, or
- 0.090 in. (90 mil) for gore and centerline/no-passing barrier line markings.

In addition, at a longitudinal spacing indicated on the plans, the markings must be profiled in a vertical manner such that the profile is transverse to the longitudinal marking direction. The profile must not be less than 0.30 in. (300 mil) nor greater than 0.50 in. (500 mil) in height when measured above the normal top surface plane of the roadway. The transverse width of the profile must not be less than 3.25 in., and the longitudinal width not less than 1 in., when measured at the top surface plane of the profile bar. The profile may be either a 1 or 2 transverse bar profile. When the 2 transverse bar profile is used, the spacing between the bases of the profile bars must not exceed 0.50 in. The above transverse bar width is for each 4 in. of line width.

4.3.2.

Type II Markings. Apply on surfaces with a minimum surface temperature of 50°F. Apply at least 20 gal. per mile on concrete and asphalt surfaces and at least 22 gal. per mile on surface treatments for a solid 4-in. line. Adjust application rates proportionally for other widths. When Type II markings are used as a sealer for Type I markings, apply at least 15 gal. per mile using Type II drop-on beads.

4.3.3.

Bead Coverage. Provide a uniform distribution of beads across the surface of the stripe for Type I and Type II markings, with 40% to 60% bead embedment.

4.4.

Retroreflectivity Requirements. When specified on the plans, Type I markings must meet the following minimum retroreflectivity values for edgeline markings, centerline or no passing barrier-line, and lane lines when measured any time after 3 days, but not later than 10 days after application:

- White markings: 250 millicandela per square meter per lux (mcd/m²/lx)
- Yellow markings: 175 mcd/m²/lx

4.5.

Retroreflectivity Measurements. Use a mobile retroreflectometer for projects requiring minimum retroreflectivity requirements to measure retroreflectivity for Contracts totaling more than 200,000 ft. of pavement markings, unless otherwise shown on the plans. For Contracts with less than 200,000 ft. of pavement markings or Contracts with callout work, mobile or portable retroreflectometers may be used at the Contractor's discretion.

4.5.1.

Mobile Retroreflectometer Measurements. Provide mobile measurements averages for every 0.1 miles unless otherwise specified or approved. Take measurements on each section of roadway for each series of markings (i.e., edgeline, center skip line, each line of a double line, etc.) and for each direction of traffic flow. Measure each line in both directions for centerlines on two-way roadways (i.e., measure both double solid lines in both directions and measure all center skip lines in both directions). Furnish measurements in compliance with Special Specification, "Mobile Retroreflectivity Data Collection for Pavement Markings," unless otherwise approved. The Engineer may require an occasional field comparison check with a portable retroreflectometer meeting the requirements listed above to ensure accuracy. Use all equipment in accordance with the manufacturer's recommendations and directions. Inform the Engineer at least 24 hr. before taking any measurements.

A marking meets the retroreflectivity requirements if:

- the combined average retroreflectivity measurement for a one-mile segment meets the minimum retroreflectivity values specified, and
- no more than 30% of the retroreflectivity measurement values are below the minimum retroreflectivity requirements value within the one-mile segment.

The Engineer may accept failing one-mile segments if no more than 20% of the retroreflectivity measurements within that mile segment are below the minimum retroreflectivity requirement value.

The one-mile segment will start from the beginning of the data collection and end after a mile worth of measurements have been taken; each subsequent mile of measurements will be a new segment. Centerlines with 2 stripes (either solid or broken) will result in 2 miles of data for each mile segment. Each centerline stripe must be tested for compliance as a stand-alone stripe.

Restripe at the Contractor's expense with a minimum of 0.060 in. (60 mils) of Type I marking if the marking fails retroreflectivity requirements. Take measurements every 0.1 miles a minimum of 10 days after this second application within that mile segment for that series of markings.

If the markings do not meet minimum retroreflectivity after 10 days of this second application, the Engineer may require removal of all existing markings, a new application as initially specified, and a repeat of the application process until minimum retroreflectivity requirements are met.

4.5.2. **Portable Retroreflectometer Measurements.** Take a minimum of 20 measurements for each 1-mi. section of roadway for each series of markings (i.e., edgeline, center skip line, each line of a double line, etc.) and direction of traffic flow when using a portable reflectometer. Measure each line in both directions for centerlines on two-way roadways (i.e., measure both double solid lines in both directions and measure all center skip lines in both directions). The spacing between each measurement must be at least 100 ft. The Engineer may decrease the mileage frequency for measurements if the previous measurements provide satisfactory results. The Engineer may require the original number of measurements if concerns arise.

Restripe once at the Contractor's expense with a minimum of 0.060 in. (60 mils) of Type I marking material if the average of these measurements fails. Take a minimum of 10 more measurements after 10 days of this second application within that mile segment for that series of markings. Restripe again at the Contractor's expense with a minimum of 0.060 in. (60 mils) of Type I marking material if the average of these measurements falls below the minimum retroreflectivity requirements. If the markings do not meet minimum retroreflectivity after this third application, the Engineer may require removal of all existing markings, a new application as initially specified, and a repeat of the application process until minimum retroreflectivity requirements are met.

4.5.3. **Traffic Control.** Provide traffic control, as required, when taking retroreflectivity measurements after marking application. On low volume roadways (as defined on the plans), refer to the figure, "Temporary Road Closure" in Part 6 of the *Texas Manual on Uniform Traffic Control Devices* for the minimum traffic control requirements. For all other roadways, the minimum traffic control requirements will be as shown on the Traffic Control Plan (TCP) standard sheets TCP (3-1) and TCP (3-2). The lead vehicle will not be required on divided highways. The TCP and traffic control devices must meet the requirements listed in Item 502, "Barricades, Signs, and Traffic Handling." Time restrictions that apply during striping application will also apply during the retroreflectivity inspections except when using the mobile retroreflectometer unless otherwise shown on the plans or approved.

4.6. **Performance Period.** All markings must meet the requirements of this specification for at least 30 calendar days after installation. Unless otherwise directed, remove pavement markings that fail to meet requirements, and replace at the Contractor's expense. Replace failing markings within 30 days of notification. All replacement markings must also meet all requirements of this Item for a minimum of 30 calendar days after installation.

5. MEASUREMENT

This Item will be measured by the foot; by each word, symbol, or shape; or by any other unit shown on the plans. Each stripe will be measured separately.

This is a plans quantity measurement item. The quantity to be paid is the quantity shown in the proposal unless modified by Article 9.2., "Plans Quantity Measurement." Additional measurements or calculations will be made if adjustments of quantities are required.

Acrylic or epoxy sealer, or Type II markings when used as a sealer for Type I markings, will be measured by the foot; by each word, symbol, or shape; or by any other unit shown on the plans.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Pavement Sealer" of the size specified, "Retroreflectorized Pavement Markings" of the type and color specified and the shape, width, size, and thickness specified as applicable, "Retroreflectorized Pavement Markings with Retroreflective Requirements" of the types, colors, sizes, widths, and thicknesses specified or "Retroreflectorized Profile Pavement Markings" of the various types, colors, shapes, sizes, and widths specified.

This price is full compensation for application of pavement markings, materials, equipment, labor, tools, and incidentals.

Surface preparation of new concrete and asphalt concrete pavements more than 3 years old, where no stripe exists, will be paid for under Item 678, "Pavement Surface Preparation for Markings." Surface preparation of all other asphalt and old concrete pavement, except for sealing, will not be paid for directly but is subsidiary to this Item.

Work zone pavement markings (Type II, paint, and beads) used as a sealer for Type I markings (thermoplastic) will be paid for under Item 662, "Work Zone Pavement Markings."

If the Engineer requires that markings be placed in inclement weather, repair or replacement of markings damaged by the inclement weather will be paid for in addition to the original plans' quantity.