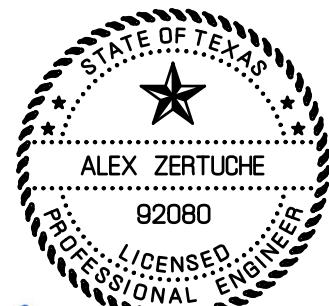


NEW BRAUNFELS UTILITIES

**San Antonio Street Rehabilitation
Phase 3 Project
Technical Specifications**


May 2025

Bid Set

Prepared By:

Texas Board of Professional Engineers and Land Surveyors Reg. No. F-23290
2967 Oak Run Parkway, Suite 215 • New Braunfels, TX 78132 • 830.203.6630

Alex Zertuche

5/9/2025

Table of Contents

NBU Specifications

- 120 - Utility Trenching and Backfill
- 121 - Trench Safety Systems
- 304 - Manholes
- 312 - Frames, Grates, Rings, and Covers
- 315 - CCTV Inspection
- 330 - Wastewater By-Pass Pumping
- 505 - Concrete Encasement and Encasement Pipe
- 507 - Bulkheads
- 510 - Pipe
- 511 - Water Valves and Hydrants
- 512 - Tracer Wire
- 515 - Pipeline Testing and Acceptance
- 522 - Pre-Cast Concrete Vaults
- 523 - Floor Access Doors

TxDOT Specifications

- 100 - Preparing Right of Way
- 104 - Removing Concrete
- 300 - Asphalts, Oils, and Emulsions
- 320 - Equipment for Asphalt Concrete Pavement
- 341 - Dense-Graded Hot-Mix Asphalt
- 401 - Flowable Backfill
- 421 - Hydraulic Cement Concrete
- 440 - Reinforcement for Concrete
- 500 - Mobilization
- 506 - Temporary Erosion, Sedimentation and Environmental Controls
- 520 - Weighing and Measuring Equipment
- 529 - Concrete Curb, Gutter, and Combined Curb and Gutter
- 530 - Intersections, Driveways, and Turnouts
- 531 - Sidewalks

Special Provisions

- NBU Specifications**
- 330 - Wastewater By-Pass Pumping
- 510 - Pipe
- 522 - Pre-Cast Concrete Vaults

TxDOT Specifications

- 401 – Flowable Backfill

New Braunfels Utilities Standard Specifications

Item No. 120
Utility Trenching and Backfill

120.1 Description

This item shall consist of labor, equipment and/or materials for excavating, bedding, backfilling, compacting, testing, grading and other appurtenant work, prescribed under this item and in accordance with the provisions of Chapter 213 of the Texas Administrative Code as it related to work over the Edwards Aquifer recharge zone, and New Braunfels Water and Wastewater Design Criteria Manual. This item shall include any pumping, bailing, drainage and Item No. 121, "Trench Safety Systems" for trench walls, when indicated or applicable. Unless otherwise provided, this item shall consist of the removal and disposition of trees, stumps and other obstructions, old structures or portions thereof such as house foundations, old sewers, masonry or concrete walls, the plugging of the ends of abandoned piped utilities cut and left in place and the restoration of existing utilities damaged in the process of excavation, cutting and restoration of pavement and base courses, the furnishing and placing of select bedding, backfilling and cement or lime stabilized backfill, the hauling and disposition of surplus materials, bridging of trenches and other provisions for maintenance of traffic or access as indicated.

120.2 Standards

The applicable provisions of the following standards shall apply as if written here in their entirety:

A. American Society for Testing and Materials (ASTM) Standards:

ASTM C33	Standard Specification for Concrete Aggregates
ASTM C125	Terminology Relating to Concrete and Concrete Aggregates
ASTM D448	Standard Classification for Size of Aggregate for Road Bridge Construction

B. Texas Department of Transportation (TxDOT)

Tex-114-E	Laboratory Compaction Characteristics and Moisture-Density Relationship of Subgrade, Embankment Soils, and Backfill Material
Tex-115-E	Field Method For Determining In-Place Density Of Soils And Base Materials
Tex-129-E	Measuring the Resistivity of Soil Material
Tex-406-A	Material Finer than 75 μm (No. 200) Sieve in Mineral Aggregates (Decantation Test For Concrete Aggregates)
Tex-410-A	Abrasion of Coarse Aggregate Using the Los Angeles Machine

120.3 Materials

A. Standard Bedding Materials

USE / PIPE MATERIAL	Cement Stabilized Backfill	Natural or Mf'd Sand	Stone Screenings	Pea Gravel	Course Aggregate
WATER					
Service Tubing 1" to 2"		X	X	X	
WATER and WASTEWATER (PVC)					
Up to 15 Inch ID		X	X		
Larger Than 15 Inch ID			X	X	
WATER and FORCEMAINS (DUCTILE IRON)					
Up to 15 Inch ID			X	X	X
Larger Than 15 Inch ID				X	X
WASTEWATER (FRP)					
Larger Than 30 Inch ID			X		

1. General requirements and limitations governing bedding selection.
 - a. Crushed gravel or crushed stone shall not be used with polyethylene tubing or polyethylene film wrap.
 - b. Pea Gravel or bedding stone shall be used in blasted trenches.
2. Requirements to prevent particle migration.

Bedding material shall be compatible with the materials in the trench bottom, walls and backfill so that particle migration from, into or through the bedding is minimized. The Engineer may require one or more of the following measures to minimize particle migration: use of impervious cut-off collars; selected bedding materials, such as pea gravel or bedding stone mixed with sand; filter fabric envelopment of the bedding; cement stabilized backfill; or other approved materials or methods. Measures to minimize particle migration will be shown on the Drawings or designated by the Engineer, and, unless provisions for payment are provided in the contract documents, the cost of these measures shall be agreed by change order. The following limitations shall apply.

- (a) Sand, alone, shall not be used in watercourses, in trenches where groundwater is present, or in trenches with grades greater than 5 percent.
- (b) Pea gravel or bedding stone, alone, shall not be used in the street right-of-way within 5 feet of subgrade elevation in trenches that are 3 feet or wider.
- (c) Each gravel or bedding stone, alone, shall not be used where the trench bottom, sides, or backfill is composed of non-cementitious, silty or sandy soils having plasticity indices less than 20, as determined by the Engineer.

B. Concrete

Concrete shall conform to TxDOT Standard Specifications Item No. 421, "Hydraulic Cement Concrete".

C. Foundation Rock

Foundation rock shall be well graded coarse aggregate ranging in size from 2 to 8 inches.

D. Flexible Base

Flexible base shall conform to TxDOT Standard Specifications Item No. 247, "Flexible Base".

E. Pipe Bedding**1. Coarse Aggregate**

a. Pipe bedding stone shall be clean gravel, crushed gravel or crushed limestone, free of mud, clay, vegetation or other debris, conforming to ASTM C33 for stone quality. Size gradation shall conform to Grade 6 Coarse Aggregate as defined in TxDOT Standard Specifications Item No. 421, "Hydraulic Cement Concrete".

b. Course aggregate shall not exceed 35% loss as determined by the Los Angeles Abrasion test per TxDOT Test Method Tex-410-A.

2. Fine Aggregate**a. Concrete and Mortar Sand**

Shall conform to fine aggregate as defined in TxDOT Standard Specifications Item No. 421, "Hydraulic Cement Concrete".

b. Bedding Sand

Sand for use as pipe bedding shall be clean, granular and homogeneous material composed mainly of mineral matter, free of mud, silt, clay lumps or clods, vegetation or debris. The material removed by decantation TxDOT Test Method Tex-406-A, plus the weight of any clay lumps, shall not exceed 4.5 percent by weight.

The resistivity shall not be less than 3000 ohms-cm as determined by TxDOT Test Method Tex-129-E. Size gradation of sand for bedding shall be as follows:

GRADATION TABLE	
SIEVE SIZE	% RETAINED BY WEIGHT
1/4"	0
#60	75-100
#100	95-100

c. Stone Screenings

Stone screenings shall be washed and screened natural sands or sands manufactured by crushing stones complying with the requirements and tests of ASTM C33.

Screenings shall be free of mud, clay, vegetation or other debris, and shall conform to the following Table:

SIEVE SIZE	% PASSING
3/8"	100
No. 4	95 to 100
No. 8	80 to 100
No. 16	50 to 85
No. 30	25 to 60
No. 50	10 to 30
No. 100	2 to 10

Stone screenings shall have not more than 45 percent passing any sieve retained on the next consecutive sieve of those shown above, and its fineness modulus, as defined in ASTM C125, shall not be less than 2.3 nor more than 3.1.

3. Pea Gravel

Pea gravel bedding shall be clean washed material, hard and insoluble in water, free of mud, clay, silt, vegetation or other debris. Stone quality shall meet ASTM C 33. Size gradation shall be as follows:

SIEVE SIZE	% RETAINED BY WEIGHT
3/4"	0
1/2"	0-25
1/4"	90-100

Pea Gravel shall not exceed 35% loss as determined by the Los Angeles Abrasion test per TxDOT Test Method Tex-410-A.

4. Select Backfill or Borrow

This material shall consist of borrow or suitable material excavated from the trench. It shall be free of stones or rocks over 6 inches and shall have a plasticity index of less than 20. The moisture content at the time of compaction shall be within 2 percent of optimum as determined by TxDOT Test Method Tex-114-E. Sandy loam borrow will not be allowed unless shown on the Drawings or authorized by the Engineer.

All suitable materials from excavation operations not required for backfilling the trench may be placed in embankments, if applicable. All unsuitable materials that cannot be made suitable shall be considered surplus excavated materials as described in 510.3(M). The Contractor may, if approved by the Engineer, modify unsuitable materials to make them suitable for use. Modification may include drying, removal or crushing of over-size material, and lime or cement treatment.

5. Cement Stabilized Backfill

When indicated or directed by the Engineer, all backfill shall be with cement-stabilized backfill rather than the usual materials. Unless otherwise indicated, cement stabilized backfill material shall consist of a mixture of the dry constituents described for Class J Concrete. The cement and aggregates shall be thoroughly dry mixed with no water added to the mixture except as may be directed by the Engineer.

F. Backfill Materials

The Engineer may approve any of the following well graded materials:

1. Select trench material
2. Sand
3. Crushed rock cuttings
4. Rock cuttings
5. Foundation rock
6. Blasted material with fines and rock
7. Cement stabilized material
8. Borrow

Within the 100-year flood plain, sand will not be permitted for backfilling. The Engineer will approve the topsoil for areas to be seeded or sodded.

120.4 Construction Methods

A. General

Prior to commencing this Work, all erosion control and tree protection measures required shall be in place and all utilities located and protected as set forth in "General Conditions". Clearing the site shall conform to TxDOT Standard Specifications Item No. 100, "Preparing ROW". Maintenance of environmental quality protection shall comply with all requirements of "General Conditions" and TxDOT Standard Specifications Item No. 560, "Temporary Erosion, Sedimentation, and Environmental Controls."

The Contractor shall conduct his Work such that a reasonable minimum of disturbance to existing utilities will result. Particular care shall be exercised to avoid the cutting or breakage of all existing utilities. If at any time the Contractor damages the utilities in place through his operations, the Contractor shall immediately notify the owner of the utility to make the necessary repairs. When active wastewater sewer lines are cut in the trenching operations, temporary flumes shall be provided across the trench while open and the lines shall be restored when the backfilling has progressed to the original bedding lines of the sewer so cut.

The Contractor shall inform utility owners sufficiently in advance of the Contractor's operations to enable such utility owners to reroute, provide temporary detours or to make other adjustments to utility lines in order that the Contractor may proceed with his Work with a minimum of delay and expense. The Contractor shall cooperate with all utility owners

concerned in effecting any utility adjustments necessary and shall not hold New Braunfels Utilities liable for any expense due to delay or additional Work because of conflicts arising from existing utilities.

The Contractor shall do all trenching in accordance with the provisions and the directions of the Engineer as to the amount of trench left unfilled at any time. All excavation and backfilling shall be accomplished as indicated and in compliance with State Statutes.

Where excavation for a pipe line is required in an existing City street, a street cut permit is required and control of traffic shall be as indicated in accordance with the Texas Manual on Uniform Traffic Control Devices.

Wherever existing utility branch connections, sewers, drains, conduits, ducts, pipes or structures present obstructions to the grade and alignment of the pipe, they shall be permanently supported, removed, relocated or reconstructed by the Contractor through cooperation with the owner of the utility, structure or obstruction involved. In those instances where their relocation or reconstruction is impractical, a deviation from line and grade will be ordered by the Engineer and the change shall be made in the manner directed.

Adequate temporary support, protection and maintenance of all underground and surface utility structures, drains, sewers and other obstructions encountered in the progress of the Work shall be furnished by the Contractor, at his expense and as approved by the Engineer.

Where traffic must cross open trenches, the Contractor shall provide suitable bridges. For trenches less than 2 feet in width, sheet steel plates having a minimum thickness of 1/2 inch shall be used. For trenches up to 4 feet in width, sheet steel plates having a minimum thickness of 3/4 inches shall be used. In all cases, the plates shall overlay the top of the trench a minimum of 18 inches on both sides and secured by asphalt. Adequate provisions shall be made for the flow of sewers; drains and watercourses encountered during construction and any structures, which may have been disturbed, shall be satisfactorily restored upon completion of Work.

When rainfall or runoff is occurring or is forecast by the U.S. Weather Service, the Contractor shall not perform or attempt any excavation or other earth moving Work in or near the flood plain of any stream or watercourse or on slopes subject to erosion or runoff, unless given specific approval by the Engineer. When such conditions delay the Work, an extension of time for working day contracts will be allowed in accordance with "General Conditions".

B. Trench Excavation

1. General

Underground piped utilities shall be constructed in an open cut in accordance with Federal regulations, applicable State Statutes conforming to Item No. 121, "Trench Safety Systems" and with a trench width and depth described below. When pipe is to be constructed in fill above the natural ground, Contractor shall construct embankment to an elevation not less than one foot above the top of the pipe, after which trench is excavated. Required vertical sides shall be sheeted and braced as indicated to maintain the sides of the required vertical excavation throughout the construction period. Adequacy of the design of sheeting and bracing shall be the responsibility of the Contractor's design

professional. The Contractor shall be responsible for installation as indicated. After the pipe has been laid and the backfill placed and compacted to 12 inches above the top of the pipe, any sheeting, shoring and bracing required may be removed with special care to insure that the pipe is not disturbed. As each piece of sheeting is removed, the space left by its removal must be thoroughly filled and compacted with suitable material and provisions made to prevent the sides of the trench from caving until the backfill has been completed. Any sheeting left in place will not be paid for and shall be considered subsidiary to the pipe item bid.

2. Trench Width

Trenches for water and wastewater lines shall have a clear width on each side beyond the outside surfaces of the pipe bell or coupling of not less than 6 inches nor more than 12 inches.

If the trench width within the pipe zone exceeds this maximum, the entire pipe zone shall be refilled with approved backfill material, thoroughly compacted to a minimum of 95 percent of maximum density as determined by TxDOT Test Method Tex-114-E and then re-excavated to the proper grade and dimensions. Excavation along curves and bends shall be so oriented that the trench and pipe are approximately centered on the centerline of the curve, using short lengths of pipe and/or bend fittings if necessary.

For all utilities to be constructed in fill above natural ground, the embankment shall first be constructed to an elevation not less than 1 foot above the top of the utility after which excavation for the utility shall be made.

3. Trench Depth and Depth of Cover

All pipe and in-line appurtenances shall be laid to the grades indicated. The depth of cover shall be measured from the established finish grade, natural ground surface, subgrade for staged construction, street or other permanent surface to the top or uppermost projection of the pipe.

Where not otherwise indicated, all water piping shall be laid to the following minimum depths:

- a. Water piping installed in natural ground in easements or undeveloped areas, which are not within existing or planned streets, roads or other traffic areas shall be laid with at least 48 inches of cover.
- b. Water piping installed in existing or proposed streets, roads or other traffic areas shall be laid with at least 48 inches of cover below finished grade.

Where not otherwise indicated, all wastewater piping shall be laid to the following minimum depths:

- (a) Wastewater piping installed in natural ground in easements or other undeveloped areas, which are not within existing or planned streets, roads or other traffic areas shall be laid with at least 48 inches of cover.
- (b) Wastewater piping installed in existing or proposed streets, roads or other traffic areas shall be laid with at least 48 inches of cover below finished grade.

4. Classification of Excavation

Excavation will not be considered or paid for as a separate item of Work, so excavated material will not be classified as to type or measured as to quantity. Full payment for all excavation required for the construction shall be included in the various unit or lump sum Contract prices for the various items of Work installed, complete in place. No extra compensation, special treatment or other consideration will be allowed due to rock, pavement, caving, sheeting and bracing, falling or rising water, working under and in the proximity of trees or any other handicaps to excavation.

5. Dewatering Excavation

Underground piped utilities shall not be constructed or the pipe laid in the presence of water. All water shall be removed from the excavation prior to the pipe placing operation to insure a dry firm granular bed on which to place the underground piped utilities and shall be maintained in such unwatered condition until all concrete and mortar is set. Removal of water may be accomplished by bailing, pumping or by a well-point installation as conditions warrant.

In the event that the excavation cannot be dewatered to the point where the pipe bedding is free of mud, a seal shall be used in the bottom of the excavation. Such seal shall consist of Class B concrete, conforming to TxDOT Standard Specifications Item No. 421, "Hydraulic Cement Concrete", with a minimum depth of 3 inches.

6. Trench Conditions

Before attempting to lay pipe, all water, slush, debris, loose material, etc., encountered in the trench must be pumped or bailed out and the trench must be kept clean and dry while the pipe is laid and backfilled. Where needed, sump pits shall be dug adjoining the trench and pumped as necessary to keep the excavation dewatered.

Backfilling shall closely follow pipe laying so that no pipe is left exposed and unattended after initial assembly. All open ends, outlets or other openings in the pipe shall be protected from damage and shall be properly plugged and blocked watertight to prevent the entrance of trench water, dirt, etc. The interior of the pipeline shall at all times be kept clean, dry and unobstructed.

Where the soil encountered at established footing grade is a quicksand, saturated or unstable material, the following procedure shall be used unless other methods are indicated:

- a. All unstable soils shall be removed to a depth of a minimum 2 feet below bottom of piped utility or as required to stabilize the trench foundation. Such excavation shall be carried out for the entire trench width.
- b. All unstable soil so removed shall be replaced with a concrete seal, foundation rock or coarse aggregate materials placed across the entire trench width in uniform layers not to exceed 6 inches, loose measure and compacted by mechanical tamping or other means which shall provide a stable foundation for the utility.

Forms, sheathing and bracing, pumping, additional excavation and backfill required in unstable trench conditions shall be subsidiary to pipe bid.

7. Blasting

All blasting shall conform to the provisions of the "General Conditions" and/or "Public Safety and Convenience".

8. Removing Old Structures

When out of service masonry structures or foundations are encountered in the excavation, such obstructions shall be removed for the full width of the trench and to a depth of 1 foot below the bottom of the trench. When abandoned inlets or manholes are encountered and no plan provision is made for adjustment or connection to the new sewers, such manholes and inlets within the construction limits shall be removed completely to a depth 1 foot below the bottom of the trench. In each instance, the bottom of the trench shall be restored to grade by backfilling and compacting by the methods provided above. Where the trench cuts through storm or wastewater sewers which are known to be abandoned, these sewers shall be cut flush with the sides of the trench and blocked with a concrete plug in a manner satisfactory to the Engineer. When old structures are encountered, which are not visible from the existing surface and are still in service, they shall be protected and adjusted as required to the finished grade.

9. Lines and Grades

Grades, lines and levels shall be as indicated on the Construction Drawings. Any damage to the above by the Contractor shall be re-established at the Contractor's expense. The Contractor shall furnish copies of all field notes and "cut sheets" to New Braunfels Utilities.

The location of the lines and grades indicated on the Construction Drawings may be changed only by direction of the Engineer and it is understood that the Contractor will be paid on the basis of his unit Contract prices bid for such Work actually performed and shall make no claim for damages or loss of anticipated profits due to the change of location or grade.

The Contractor shall furnish, at his expense, all necessary batter boards or electronic devices for controlling the Work. Batter boards shall be of adequate size material and shall be supported substantially. The boards and all location stakes must be protected from possible damage or change of location. The Contractor shall furnish good, sound twilled lines for use in achieving lines and grades and the necessary plummets and graduated poles.

The Contractor shall submit to the Engineer at least 6 copies of any layout Drawings from the pipe manufacturer for review and approval. The Contractor shall submit the layout Drawings at least 30 days in advance of any actual construction of the project. The Engineer will forward all comments of the review to the Contractor for revision. Revisions shall be made and forwarded to the Engineer for his acceptance. Prior to commencement of the Project, reviewed layout Drawings will be sent to the Contractor marked for construction.

Should the Contractor's procedures not produce a finished pipe placed to grade and alignment, the pipe shall be removed and relayed and the Contractors procedures modified to the satisfaction of the Engineer. No additional compensation shall be paid for the removal and relaying of pipe required above.

10. Surplus Excavated Materials

Excess material or material which cannot be made suitable for use in embankments will be declared surplus by the Engineer and shall become the property of the Contractor to dispose of off site at a permitted fill site, without liability to the NBU or any individual. Such surplus material shall be removed from the Work site promptly following the completion of the portion of the utility involved.

C. Pipe Bedding Envelope

Pipe shall be installed in a continuous bedding envelope of the type shown on the drawings or as described herein. The envelope shall extend the full trench width, to a depth of 6 inches below the pipe and to 12 inches above water and wastewater pipe.

D. Laying Pipe

No pipe shall be installed in the trench until excavation has been completed, the bottom of the trench graded and the trench completed as indicated.

E. Concrete Encasement, Cradles, Caps and Seals

Where called for by the Engineer, or when trench foundation is excessively wet or unstable or installation of water or wastewater pipe will result in less than 48 inches of cover, Contractor shall notify Engineer. Engineer may require Contractor to install a concrete seal, cradle, cap, encasement or other appropriate action.

All concrete cap, etc., shall be continuous and begin and end within 6 inches of pipe joints. Concrete cap, cradle and encasement shall conform to NBU Standard Detail No. 421, "Concrete Trench Cap". The pipe shall be well secured to prevent shifting or flotation while the concrete is being placed.

F. Anchorage Bulkheads

Concrete bulkheads keyed into the undisturbed earth shall be placed as indicated to support and anchor the pipe and/or backfill against end thrust, slippage on slopes, etc. Concrete material and placement shall be Class A, TxDOT Item No. 421, "Hydraulic Cement Concrete".

G. Trench Caps, Concrete Rip-Rap and Shaped Retards

Where called for by the Contract or as directed by the Engineer, concrete trench caps, concrete rip-rap and/or shaped retards shall be placed as detailed by the Drawings as protection against erosion. Concrete material and placement shall be Class B as defined in TxDOT Item No. 421, "Hydraulic Cement Concrete".

H. Backfilling and Compaction

1. General

Special emphasis is placed upon the need to obtain uniform density throughout the backfill material. The maximum lift of backfill shall be determined by the compaction equipment selected and in no case shall it exceed 18 inches, loose measurement.

No heavy equipment, which might damage pipe, will be allowed over the pipe until sufficient cover has been placed and compacted. All internal pipe bracing installed or recommended by the manufacturer shall be kept in place until the pipe bedding and trench backfill have been completed over the braced pipe section. Testing of the completed backfill in streets and under and around structures shall meet the specified density requirements. Initial testing shall be at the Contractor's expense and conform to the "General Conditions."

Backfill shall be free of debris, roots, organic matter, rock or gravel larger than 6 inches in any dimension, or any other harmful matter.

2. Backfill in Street Right of Way

Placement of backfill under existing or future pavement structures and within 2 feet of any structures shall be compacted to the required density using any method, type and size of equipment, which will give the required compaction without damaging the pipe or bedding. Placement of backfill greater than 2 feet beyond structures in Right of Way shall be conform to (6.) below. The depth of layers, prior to compaction, shall depend upon the type of sprinkling and compacting equipment used and the test results thereby obtained. Prior to and in conjunction with the compaction operation, each layer shall be brought to the moisture content necessary to obtain the required density and shall be kept level to insure uniform compaction over the entire layer. Testing for density shall be in accordance with Test Method Tex-114-E and Test Method Tex-115-E.

Each layer of backfill must provide the density as required herein. Swelling soils (soils with plasticity index of 20 or more) shall be sprinkled as required to provide not less than optimum moisture nor more than 2 percent over optimum moisture content and compacted to the extent necessary to provide not less than 98 percent nor more than 102 percent of the density as determined in accordance with Test Method Tex-114-E. Non-swelling soils (soils with plasticity index less than 20) shall be sprinkled as required and compacted to the extent necessary to provide not less than 98 percent of the density as determined in accordance with Test Method Tex-114-E.

After each layer of backfill is complete, tests may be made by the Engineer. If the material fails to meet the density indicated, the course shall be reworked as necessary to obtain the indicated compaction and the compaction method shall be altered on subsequent Work to obtain indicated density.

At any time, the Engineer may order proof rolling to test the uniformity of compaction of the backfill layers. All irregularities, depressions, weak or soft spots that develop shall be corrected immediately by the Contractor.

Should the backfill, due to any reason, lose the required stability, density or finish before the pavement structure is placed, it shall be recompacted and refinished at the sole

expense of the Contractor. Excessive loss of moisture in the subgrade shall be prevented by sprinkling, sealing or covering with a subsequent backfill layer or granular material. Excessive loss of moisture shall be construed to exist when the subgrade soil moisture content is more than 4 percent below the optimum of compaction ratio density. Backfill shall be placed from the top of the bedding material to the existing grade, base course, subgrade or as indicated. The remainder of the street backfill shall be Flexible Base, Concrete or Hot Mix Asphalt Concrete as indicated or be replaced in kind to the surface removed to construct the pipe.

3. Backfill in County Street or State Highway Right of Way

All Work within the right of way shall meet the requirements of (2.) above, as a minimum and shall meet the requirements of the permit issued by the County when their requirements are more stringent. Prior to the start of construction, the Contractor shall be responsible for contacting the appropriate TxDOT office or County Commissioner's Precinct Office and for coordinating his activities with the operating procedures in effect for utility cut permits and pavement repair under their jurisdiction. Approval for all completed Work in the State or County right of way shall be obtained from the appropriate Official prior to final payment by the Owner.

4. Backfill in Railroad Right of Way

All Work within the railroad right of way shall meet the requirements of (3.) above, as a minimum and shall meet the requirements of the permit issued by the Railroad Owner when their requirements are more stringent. Approval for all completed Work in the railroad right of way shall be obtained from the Railroad prior to Final Completion.

5. Backfill in Easements

Where not otherwise indicated, Contractor may select whatever methods and procedures may be necessary to restore entire Work area to a safe, useful and geologically stable condition with a minimum density of 95 percent or a density superior to that prior to construction.

In and near flood plain of all streams and watercourses, under or adjacent to utilities, structures, etc. all backfill shall be compacted to a density of not less than 95 percent conforming to TxDOT Test Method Tex-114-E, unless otherwise directed by Engineer.

All soil areas disturbed by construction shall be covered with top soil and seeded conforming to TxDOT Item No. 164, "Seeding for Erosion Control". All turf, drainways and drainage structures shall be constructed or replaced to their original condition or better. No debris shall remain in the drainways or drainage structures.

I. Quality Control Testing.

The Contractor shall be responsible for compaction in accordance with the appropriate Specification. Compaction tests may be done at one location point randomly selected or as indicated by the NBU Inspector, per each 12 inch loose lift per 400 linear feet. These tests shall be performed by a nationally-accredited, independent testing laboratory. Payment for

such tests shall be the responsibility of the Contractor, including the material proctor tests and density tests.

Any failed test shall require the Contractor to remove and replace that layer of backfill to 50 feet from either side from the failed test location. The Contractor will also be required at no cost to NBU to provide two additional tests at the replaced location where the initial test failed and at one location point, randomly selected or as indicated by the NBU Inspector.

J. Cleanup and Restoration

It shall be the Contractor's responsibility to keep the construction site neat, clean and orderly at all times. Cleanup shall be vigorous and continuous to minimize traffic hazards or obstructions along the streets and to driveways. Trenching, backfill, pavement repair (as necessary), and cleanup shall be coordinated as directed by the Utility. The Engineer will regulate the amount of open ditch and may halt additional trenching if cleanup is not adequate to allow for orderly traffic flow and access.

Materials at the site shall be stored in a neat and orderly manner so as not to obstruct pedestrian or vehicular traffic. All damaged material shall be removed from the construction site immediately and disposed of in a proper manner. All surplus excavated materials become the property of the Contractor for disposal at his expense. After trenching, the Contractor shall immediately remove all excavated materials unsuitable for or in excess of, backfill requirements. Immediately following the pipe laying Work as it progresses, the Contractor shall backfill, grade and compact all excavations as provided elsewhere and shall immediately clean up and remove all unused soil, waste and debris and restore all surfaces and improvements to a condition equal or superior to that before construction began and to an appearance which complements the surroundings. The Contractor shall grade and dress the top 6 inches of earth surfaces with soil or other material similar and equal to the surrounding, fill and smooth any visible tracks or ruts, replace and re-establish all damaged or disturbed turf or other vegetation and otherwise make every effort to encourage the return of the entire surface and all improvements to a pleasant appearance and useful condition appropriate and complementary to the surroundings and equal or similar to that before construction began.

Permanent pavement replacement, if necessary, shall begin immediately after all testing of each segment of piping is satisfactorily completed.

120.5 Measurement

Work under this item shall be considered subsidiary to the Work covered under Item 510, "Pipe" unless specified as a separate bid item. The concrete seal, foundation rock or coarse aggregate when used as directed in unstable material will be paid for at the unit price bid per cubic yard, which shall be full payment for all excavation and removal of unsuitable material and furnishing, placing and compacting the foundation rock, coarse aggregate or other approved material all complete in place. Excavation and backfill, when included as a separate pay item, will be paid for by the designated Pay Item.

A. Concrete Cradles and Seals

When called for in the Bid, concrete cradles and seals will be paid for at the unit Contract price bid per linear foot for the size of pipe specified, complete in place.

B. Concrete Retards

When called for in the Bid, Concrete retardants will be paid under respected bid Item, "Concrete Retardants".

C. Concrete Trench Cap and Encasement

Where the distance between the top of the concrete encasement and the top of the trench cap is less than 36 inches, the concrete cap and encasement shall be poured as one unit and paid for under this bid item at the Contract price bid per linear foot. When the distance above is greater than 36 inches or when the trench cap is placed separately, the trench cap shall be paid for as a separate item, per linear foot, complete in place.

D. Cement-Stabilized Backfill

Cement-stabilized backfill will be paid for at the unit price bid per linear foot and shall be full payment to the Contractor for furnishing and installing the required material, mixed, placed and cured complete in place.

E. Concrete Encasement

When called for in the Bid, Concrete Pipe Encasement will be paid under respected bid Item, "Encasement and Encasement Pipe".

F. Trench Safety Systems

When called for in Bid, Trench Safety Systems shall conform to Item No. 121, "Trench Safety Systems".

120.6 Payment

Payment, when included as a Contract pay item, will be made under one of the following:

Pay Item: Pipe Excavation, ____ Ft. Width	Per Linear Foot.
Pay Item: Pipe Trench Backfill, ____ Ft. Width	Per Linear Foot.
Pay Item: Concrete Seal or Cradle, ____ Dia. Pipe	Per Linear Foot.
Pay Item: Concrete Trench Cap, ____ Ft. Width	Per Linear Foot.
Pay Item: Concrete Cap and Encasement, ____ Dia. Pipe	Per Linear Foot.
Pay Item: Cement Stabilized Backfill, ____ Dia. Pipe	Per Linear Foot.

End

**Item No. 121
Trench Safety Systems**

121.1 Description

This item shall govern the following:

- A. Designing, furnishing, and installing a Trench Safety System for trench excavation;
- B. Dewatering the area as specified on the Drawings and/or required; and
- C. Maintenance and removal of the trench safety systems as determined by Contractor's Trench Safety Engineer and/or Contractor's Competent Person(s).

This Item also includes special clearing, excavation and backfilling for safety systems. At a minimum, this work shall conform to United States Department of Labor Rules 29 CFR, Part 1926 Occupational Safety and Health Administration (OSHA). The Competent Person(s) shall be on the project whenever workers are in an excavation trench. If special shoring requirements are needed based upon the conditions of the project, they shall be submitted to the Owner for review.

121.2 Trench Safety System Plan Submittal

Prior to, or at the Pre-Construction Conference, the Contractor shall submit to the Owner a Trench Safety System Plan sealed by a registered Professional Engineer licensed in the State of Texas. Notice To Proceed with construction will not be issued by the Owner until the Contractor has submitted a Trench Safety System Plan to the Owner.

The Trench Safety System Plan at a minimum shall conform to OSHA standards for sloping of sides, utilization of trench boxes, and/or utilization of shoring, sheeting and bracing methods. The Contractor shall be responsible for obtaining the geotechnical information necessary to complete the design of the Trench Safety System Plan. If the geotechnical information for the design of the improvements is acquired by the Owner or designated representative, it shall be provided to the Contractor for information purposes subject to the provisions of Standard Contract.

The submittal requirements of the Trench Safety System Plan must include:

- A. A Drawing or plan indicating specific designation of areas in which each type of system will be used, including the length of trench to be opened, the length of time that the trench will remain open, the means of egress, the storage of materials, allowable loads on trench walls, the methods for placing/compacting bedding/backfill within the safety of the system, any equipment restrictions and the subsequent removal of system,
- B. Drawings or manufacturer's data, as applicable, that describe the various elements of the Trench Safety System in sufficient detail that the workers can properly install the Trench Safety System,
- C. Recommendations and limitations for using systems.
- D. Sealed engineering calculations and/or equipment manufacturer's certifications, as applicable, that confirm that the system is designed to withstand the anticipated loadings

and that it can be fully installed/implemented in the designated space within the street right of way or easement provided by Owner or designated representative.

- E. A Certificate of Insurance of the Trench Safety Engineer's Professional Liability Insurance coverage meeting the requirements of the Standard Contact Documents shall be provided.
- F. Certificate of Completion of an OSHA-approved program indicating that the Contractor's Competent Person(s) has received training in "Excavation Safety".

121.3 Trench Safety System Plan Review

The review of the Trench Safety System Plan that will be conducted by the Owner or designated representative shall only relate to general conformance with OSHA standards and regulations. The Owner's failure to note exception(s) to the submittal shall not relieve the Contractor of any or all responsibility or liability for the Trench Safety System Plan. The Contractor shall remain solely and completely responsible for all trench safety systems and for the associated means, methods, procedures, and materials.

121.4 Construction Methods

The Contractor's Competent Person(s) shall be responsible for the maintenance of a copy of appropriate OSHA regulations onsite and the implementation of OSHA trenching safety regulations at the work site. Trenching shall be completed to the lines and grades indicated on the Drawings or as specified in various technical standard specification items requiring excavation and trenching and/or backfilling. The Contractor shall perform all trenching in a safe manner and shall maintain safety systems to prevent death or injury to personnel or damage to structures, utilities, or property in or near excavation.

If evidence of possible cave-ins or earthen slides is apparent or an installed trench safety system is damaged, the work in trench shall immediately cease, personnel evacuated from hazardous area and the Owner notified. Personnel shall not be allowed to re-enter the excavation until necessary repairs or replacements are completed and are inspected and approved by the Contractor's Competent Person(s). Repair and replacement of damaged safety system shall be at the Contractor's sole expense.

121.5 Changed Conditions

When changed conditions require modifications to the Trench Safety System, the Contractor shall provide to the Owner or designated representative a new design or an alternate Trench Safety System that is proposed by the Contractor's Trench Safety Engineer to address the changed conditions encountered. Copies of the new design or alternate system shall be provided to the Owner or designated representative in accordance with the requirements of Section 121.2, "Trench Safety System Plan Submittal". A copy of the most current Trench Safety System shall be maintained on site and made available to inspection and enforcement officials at all times.

Any changes to the Trench Safety System Plan that are initiated by the Contractor for operational efficiency or as a result of changed conditions, that could be reasonably anticipated, will not be cause for contract time extension or cost adjustment. When changes to the Trench Safety System Plan are necessitated by severe and uncharacteristic natural conditions or other

conditions totally out of the control of the Contractor, the Contractor may make a written request to the Owner for a Change Order to address the anticipated work. The Contractor shall notify the Owner in writing within 24 hours of the occurrence of changed conditions that the Contractor anticipates will require the submittal of a claim for additional compensation. Under 'Changed Conditions" the work deemed immediately necessary by the Contractor to protect the safety of workers and public, equipment or materials may only be accomplished until the Owner or designated representative has a reasonable opportunity to investigate the Contractor's written request for a Change Order and respond in writing to the request.

121.6 Measurement

Trench Safety Systems shall be measured by linear foot through manholes and other appurtenances along the centerline of trench conforming to the Contractor's Drawings and specifications. Special shoring requirements shall be measured by the square feet of shoring used.

121.7 Payment

Payment for Trench Safety Systems, measured as prescribed above, will be made at unit bid price per linear foot of trench as measured in Section 121.6 per Contractor's Drawings and specifications. The unit bid price shall include full compensation for designing, furnishing, installing the system; for dewatering, maintenance, replacement, and removal of the Trench Safety Systems and for sloping, special clearing, and excavation necessary to safely implement the Trench Safety System Plan.

Payment will be made under the following:

Pay Item: Trench Safety Systems (all depths)	Per Linear Foot
Pay Item: Special Shoring	Per Square Foot

END

**Item No. 304
Manholes****304.1 Description**

This item shall govern construction of manholes complete in place for lines smaller than 18-inches, lines 18-inches and greater in diameter shall utilize polymer concrete manholes, covered under Item No. 303. This item shall also govern the materials used therein, including excavation, installation, backfilling and surface restoration. It shall also include furnishing and installing rings, covers, coatings, and appurtenances, as well as any incidental work including pumping and drainage necessary to complete the work. Wastewater manholes shall be 'acceptance tested' by the Contractor.

Items contained in the SPL cannot be substituted for items shown on the Drawings, or called for in the specifications, or specified in the Bidding Requirements, Contract Forms and Conditions of Contract, unless approved by the Engineer or designated representative. The Standard Product List current at the time of plan approval will govern.

304.2 Standards

Comply with local governing regulations if more stringent than specified herein. Manholes shall meet the following standards (latest edition).

A. ASTM International (ASTM) Standards:

ASTM C478	Standard Specification for Circular Precast Reinforced Concrete Manhole Sections
ASTM C443	Standard Specification for Joints for Concrete Pipe and Manholes, Using Rubber Gaskets
ASTM C923	Standard Specification for Resilient Connectors Between Reinforced Concrete Manhole Structures, Pipes, and Laterals
ASTM D4787	Standard Practice for Continuity Verification of Liquid or Sheet Linings Applied to Concrete Substrates
ASTM D4976	Standard Specification for Polyethylene Plastics Molding and Extrusion Materials
ASTM D6132	Standard Test Method for Nondestructive Measurement of Dry Film Thickness of Applied Organic Coatings Using an Ultrasonic Coating Thickness Gage
ASTM D7234	Standard Specification for Pull-Off Adhesion Strength of Coatings on Concrete Using Portable Pull-Off Adhesion Testers

304.3 Quality Assurance

Applicators of coatings to the interior surfaces of wastewater manholes, as specified in shall be listed on the New Braunfels Utilities Standard Products Lists (SPLs). Individual(s) setting up and operating equipment to core through the walls of existing manholes or junction boxes shall have experience in coring similar size holes through the walls of similar size and type structures on at least ten (10) projects (or 15 manholes) in New Braunfels' jurisdiction in the last 5 years.

304.4 Submittals

The submittal requirements of this specification item must include:

A. Products and Materials

The Contractor shall submit descriptive information and evidence that the materials and equipment the Contractor proposes for incorporation in the Work are of the kind and quality that satisfies the specified functions and quality as specified or presented in the Drawings. The New Braunfels Utilities Standard Products Lists (SPLs) form a part of the Specifications for the Work. Contractors may, when appropriate, elect to use products from the SPL; however, submittal to the Engineer or designated representative shall still be required. If the Contractor elects to use any materials from these lists, each product shall be completely and clearly identified by its corresponding SPL number, when making the product submittal. This will expedite the review process in which the Engineer or designated representative decide whether the products meet the Contract requirements and the specific use foreseen by the Engineer or designated representative in the design of this engineered Project.

The products included in the SPLs current at the time of plan approval shall govern, unless a specific product or products on the lists have subsequently been removed from those SPLs because of quality or performance issues. Products and materials that are not covered by SPLs shall meet the requirements in the contract documents.

Submittals for the products and materials covered by this specification shall include manufacturer catalog sheets, technical data sheets, shop drawings, product or material test results, requirements listed below, and any other information needed to adequately describe the product or material. For products covered by SPLs, the submittal shall include a copy of the applicable SPL with the proposed product identified. An SPL by itself is not considered an adequate submittal.

The submittal requirements of this specification item include:

1. For pre-cast manholes and junction boxes: shop drawings for each structure showing, at a minimum, the Project and Contractor's name; manufacturer's name and plant location; applicable specifications; list of materials (such as adjusting rings, boots, gaskets, and pre-cast sections) by type and quantity; elevation view showing diameter or size, ring and cover size and elevation, ring type (bolted or unbolted, flared top or flared bottom) wall thickness, elevations of transitions from large diameter sections to smaller diameter sections, base width and thickness, total depth, size of openings, reinforcement, and length of each pre-cast section; structure identification number and station location; pipe line identification; pipe material and size; pipe flowline elevations; plan view showing azimuthal orientation (based on 360 degrees clockwise) of the pipes relative to the outflow pipe; technical data sheets covering pipe-to-manhole or pipe-to-junction box connectors, and gaskets.
2. For cast-in-place manholes and junction boxes: formwork drawings sealed by a registered Professional Engineer licensed in the State of Texas with documented experience in formwork design for wall pours that exceed four (4) feet in height and slabs that are not ground supported.
3. For hydraulic cement concrete; mix components and proportions, material sources, materials test results.
4. For mortar: mix components and proportions, material sources, materials test results.

5. For non-shrink grout: technical data sheet indicating ASTM type and containing instructions on surface preparation, mixing, placing, and curing procedures.
6. For wastewater manhole coatings and linings: technical data sheets that include instructions on surface preparation, mixing, placing, and curing procedures; technical data sheets for coating thickness measuring equipment and for holiday detection test equipment.
7. For connections to existing manholes or junction boxes: details showing the size, location, and method of removal of the wall section, including any temporary supports attached to the manhole or junction box wall; details showing the location of existing joints, other connecting pipes, and other features that penetrate or attach to the wall; and technical data sheets covering the pipe-to-manhole or pipe-to-junction box connectors.

B. Acceptance Test Records

Submittal of acceptance test records is required for wastewater manholes and shall include as a minimum the following items:

1. Name of manhole manufacturer
2. Interior surface coating type and application method.
3. Model and manufacturer of vacuum tester.
4. Date tested/date re-tested.
5. Indication of whether test passed or failed and statement of corrective action taken if test failed.
6. Test Method Used.
7. Location/station of manhole.
8. Type of base: Precast/cast-in-place.
9. Type of repairs made to the joints.

The test records shall also be included as part of the Project records turned in with acceptance package.

C. Acceptance Test Records

The Contractor shall submit evidence that the individual(s) setting up the equipment and coring through the walls of manholes and junction boxes are experienced with the equipment and procedures and have successfully cored through the same types of materials using the same types of equipment.

304.5 Materials and Components

A. Concrete and Cement Stabilized Sand

All concrete shall conform to TXDOT Standard Specification Item No. 421, "Hydraulic Cement Concrete". The cast in place concrete shall be Class A, and the precast concrete manhole base sections, riser sections and appurtenances shall conform to the requirements of ASTM C478/C478M, with Class I concrete. All interior surfaces of wastewater manholes shall receive a coating by an application method acceptable to the Engineer or designated

representative or shall be otherwise acceptably protected from the acidic effects of municipal wastewater. Concrete for backfill of over-excavated areas shall be Class A or Class J as indicated on the Drawings. Cement stabilized sand for bedding or backfilling, when indicated or required on the Drawings, shall contain two (2) bags of Portland Cement per cubic yard. The sand shall meet the requirements for "Fine Aggregate" in TXDOT Standard Specification Item No. 421, "Hydraulic Cement Concrete".

B. Mortar

The mortar shall be composed of one part Portland cement, one part masonry cement (or 1/4 part hydrated lime), and sand equal to 2-1/2 to 3 times the sum of the volumes of the cements and lime used. The sand shall meet the requirements for "Fine Aggregate" as given in TXDOT Standard Specification Item No. 421, "Hydraulic Cement Concrete".

C. Reinforcement

The reinforcing steel shall conform to the requirements of TXDOT Standard Specification Item No. 440, "Reinforcement for Concrete". Secondary, non-structural steel in cast-in-place wastewater manholes may be replaced by collated fibrillated polypropylene fibers, if approved by the Engineer or designated representative.

D. Rings and Covers

Rings and covers shall conform to the requirements of Standard Specification Item No. 312, "Frames, Grates, Rings and Covers".

1. Replacement Rings and Covers, 24 in. Diameter Lids.

This ring and cover shall be used for the replacement of broken rings and covers, minor manhole adjustment, or as otherwise directed by the Engineer or designated representative.

3. Rings and Covers, 32 in. Diameter Lids.

This ring and cover shall be used for all new manhole construction and major manhole adjustment, except as otherwise directed by the Engineer or designated representative.

E. Bulkheads.

Bulkheads shall meet the requirements of Standard Specification Item No. 507 "Bulkheads"

F. Precast Base Sections, Riser Sections, and Cones.

Precast concrete base sections, riser sections, and cones shall conform to the requirements of ASTM C478. The width of the invert shall be specifically sized for the connecting pipes. Inverts shall be "U" shaped with a minimum depth of three fourths of the largest pipe diameter. Where lines enter the manhole up to 24 inches above the flowline of the outlet, the invert shall be filleted to prevent splashing and solids deposition. A drop pipe shall be provided for a sewer entering a manhole at more than 24 inches above the flowline of the outlet.

Joints for wastewater base sections, riser sections, and cones shall conform to the requirements of ASTM C443. Precast bases for 48 inch inside diameter manholes shall have preformed inverts. Inserts acceptable to the Engineer or designated representative shall be embedded in the concrete wall of the manhole sections to facilitate handling; however, through-wall holes for lifting will not be permitted. Any voids between the pipe and

boot shall be filled to the springline with a product recommended by the manhole manufacturer to prevent solids collection.

G. Precast Junction Boxes.

Precast junction boxes shall be allowed only where indicated on the Drawings or acceptable to the Engineer or designated representative. Joints for wastewater junction boxes shall conform to the requirements of ASTM C443.

H. Pipe-to-Manhole/Junction Box Assemblies

Precast bases and precast junction boxes shall have flexible, resilient and non-corrosive boot connectors or ring waterstops acceptable to the Engineer or designated representative conforming to the requirements of ASTM C923 on all wastewater pipe connections.

I. Precast Flat-Slab Transition/Junction Box Lids.

Precast slab transitions and lids shall be designed to safely resist pressures resulting from loads which might result from any combination of forces imposed by an HS-20 loading as defined by the American Association of State Highway and Transportation Officials (AASHTO). The joints of precast slab transitions and of lids for wastewater applications shall conform to the requirements of ASTM C443.

J. Precast-Prefabricated Tee Manholes.

Tee manholes shall be allowed only where indicated on the Drawings or as directed by the Engineer or designated representative. The main pipe section shall conform to the requirements of New Braunfels Utilities Standard Specification Item No. 510, "Pipe". The vertical manhole portion (tee) above the main pipe shall conform to the requirements of the precast components.

The manhole tee shall have a minimum inside diameter of 48 inches and shall rise vertically centered or tangent to the main pipe, as indicated on the Drawings or as directed by the Engineer or designated representative. An access hole less than 48-inches in diameter shall be cut into the main pipe to allow a ledge for support of access ladders. Unless otherwise specified on the Drawings, the main pipe portion of the tee manhole shall be paid subsidiary to the unit tee manhole price.

K. Precast Grade Rings

Rings shall be reinforced Class A or I concrete.

1. Precast Grade Rings, 24-1/2 inches Inside Diameter:

This adjustment ring shall be used only for adjusting existing manholes with 24 inch lids and for Wastewater Access Device. Inside to outside diameter dimension of ring shall be six (6) inches with a thickness of three (3) inches to six (6) inches.

2. Precast Grade Rings, 35 inches Inside Diameter:

This adjustment ring shall be used for all new manhole construction with 32 inches lids. Inside to outside diameter dimension of ring shall be six (6) inches with a thickness of four (4) inches to six (6) inches.

L. New Manhole Construction and Minor Manhole Adjustment:

New manhole construction and minor manhole adjustments shall be performed as indicated on Standard Detail 322, "New Manhole Construction and Minor Manhole Adjustment", and shall consist of adding precast reinforced concrete rings to adjust the manhole to final grade.

For new manhole construction, the maximum vertical allowable ring adjustment, including the depth of the ring casting, shall be limited to 18 inches. For adjustments of existing manholes that fall within the limits of overlay and street reconstruction projects, the maximum vertical allowable, including the depth of the ring casting, shall be limited to two feet. All other existing manholes shall have a maximum allowable ring adjustment, including the depth of the ring casting, of one foot. Any adjustment that will exceed these requirements shall be accomplished as indicated on Standard Detail 321, "Major Manhole Adjustment" and as described below in subsection (M). All manholes not located in paved areas shall have bolted covers.

M. Major Manhole Adjustment:

Any adjustment that exceeds the requirements of subsection (L) Minor Manhole Adjustments, shall be accomplished as indicated on Standard Detail 321, "Major Manhole Adjustment", and shall consist of any combination of removing the concrete rings, and/or the manhole cone section, and/or the straight riser section of the manhole in order to bring the manhole to final grade. All manholes not located in paved areas shall have bolted covers.

N. Waterproofing Joint Materials.

O-rings and wedge seals for the joints of all wastewater manholes, when indicated on the Drawings, shall conform to the requirements of ASTM C443. The connections between reinforced concrete wastewater manhole structures and pipes shall meet the requirements of ASTM C923.

O. Interior Surface Coatings for Wastewater Manholes**1. New Construction**

The interior surface of the wastewater manholes should be properly prepared prior to product application per specifications of the approved product, typically NACE No.6/SSPC-SP13.

The interior surfaces shall be coated with one of the following products:

- i. Specialty Coating Products SCP Dropliner – 125 mils
- ii. Raven Lining Systems Raven 405 - 125 mils
- iii. SprayRoq SprayWall – 125 mils
- iv. Kerneos SewperCoat 2000 HS – 250 to 500 mils
- v. Kerneos SewperCoat PG – 250 to 500 mils

Product to be applied per specification and by certified personnel. or approved equal product) or designated in writing by the Engineer.

2. Documentation

Contractor shall submit to NBU documentation regarding the certified applicator of the product(s) and type of product(s) used for coating of the wastewater manhole(s).

P. Abandonment of Existing Manholes

When designated on the Drawings for abandonment, existing manholes shall be removed to a level not less than four feet below grade. The inlets and outlets shall be securely plugged and the structure filled with material in accordance with Standard Detail 340, "Abandoned Manhole" or as directed by the Engineer or designated representative.

Q. External Seals

Manholes shall be sealed with Infi-Shield ® Gator Wrap external rubber sleeve as manufactured by Sealing Systems, Inc. The seal shall be made of Stretchable, Self-Shrinking, Intra-Curing Halogenated based rubber with a minimum thickness of 30 mils. The back side of each unit shall be coated with a cross-linked re-enforced butyl adhesive. The butyl adhesive shall be non-hardening sealant, with a minimum thickness of 30 mils. The seal shall stretch around the substrate then overlapped creating a cross-link and fused bond between the rubber and butyl adhesive.

304.6 Construction

All manholes shall have a minimum inside diameter of 48 inches. Manhole base section or junction box dimension shall be appropriately increased to accommodate all converging pipe. A minimum horizontal clearance of 12 inches shall be maintained between adjacent pipes. Pipe ends within the base section or junction box walls shall not be relied upon to support overlying manhole dead and live load weights. All wastewater branch connections to new or existing mains shall be made at manholes with the influent pipe crown installed at the elevation of the effluent pipe crown. Where lines enter the manhole up to 24 inches above the flowline of the outlet, the invert shall be sloped upward to receive the flow, thus preventing splashing or solids deposition. Where the springline of an influent pipe is 24 inches or more above the springline of the effluent pipe, a drop manhole shall be used. Construction of extensions to existing systems shall require placement of bulkheads at locations indicated or directed by the Engineer or designated representative. Unless otherwise indicated on the Drawings; wastewater manholes shall have concentric cones, except on manholes over large mains where an eccentric cone shall be situated to provide access to an invert ledge. Eccentric cones may be used where conflicts with other utilities dictate. Flat-slab tops may be used where clearance problems exist [see 304.5(l) above].

Manholes shall be founded at the established elevations on uniformly stable subgrade. Unstable subgrade shall be over-excavated a minimum of 12 inches (and replaced with a material acceptable to the Engineer or designated representative. Precast base units shall be founded and leveled on a 6 inch coarse aggregate bedding. A pipe section with a prefabricated tee manhole and half the length of the adjoining pipe sections on each side shall be founded on a minimum of 6 inch unreinforced Class A concrete (TXDOT Standard Specification Item No. 421, "Hydraulic Cement Concrete). The cast-in-place concrete cradle shall be placed against undisturbed trench walls up to the pipe's springline.

All adjustments shall be completed prior to the placement of the final surface.

Manhole components to be reused shall be carefully removed and the contact areas shall be cleaned of all mortar, concrete, grease and sealing compounds. Any items broken in the process of removal and cleaning shall be replaced in kind by the Contractor at its expense.

If the adjustment involves lowering the top of a manhole, a sufficient depth of precast concrete rings or brick courses shall be removed to permit reconstruction. The mortar shall be cleaned from the top surface remaining in place and from all brick or concrete rings to be reused and the manhole rebuilt to the required elevation. The manhole ring and cover shall then be installed with the top surface conforming to the proposed grade.

If the adjustment involves raising the elevation of the top of the manhole in accordance with 304.5 (L), "New Manhole Construction and Minor Manhole Adjustment", the top of brick or concrete ring shall be cleaned and built up vertically to the new elevation, using new or salvaged concrete rings and the ring and cover installed with the top surface conforming to the proposed grade.

Cast-in-place foundations shall have a minimum depth of 12 inches at the invert flowline. The widths of all manhole inverts shall be specifically sized for the connecting pipes. Inverts shall be "U" shaped with a minimum depth of three fourths of the largest pipe diameter. The lowermost riser section may be set in the Portland cement concrete, while still green, after which the foundation shall be cured a minimum of 24 hours prior to proceeding with construction of the manhole up to 12 feet in depth. The foundation shall be cured an additional 24 hours prior to continuing construction above the 12 foot level. Manhole depth shall be measured from the invert flowline to the finish surface elevation.

Wastewater manholes having cast in place foundations may be constructed over existing wastewater pipes, except polyvinyl chloride (PVC), and the top half of the pipe removed to facilitate invert construction. The manhole bottom shall rise from the springline elevation of the pipe, approximately one inch for each 12 inches of run (1:12.8%). Wastewater manholes with lines larger than 18 inches shall require precast bases; manholes constructed over in-service mains however, may be built on cast-in-place foundations if the flow cannot be interrupted. Precast and cast-in-place wastewater junction boxes shall be allowed only where indicated on the Drawings or acceptable to the Engineer or designated representative.

Wastewater lines, except reinforced concrete pipe, set in cast-in-place foundations, shall require a water stop seal or gasket acceptable to the Engineer or designated representative around the outside perimeter of the pipe. It shall be approximately centered under the manhole section wall.

Cast-in-place wastewater manholes, junction boxes and flat-slab transitions shall be reinforced, Class A concrete (TXDOT Standard Specification Item No. 421, "Hydraulic Cement Concrete"). All structural concrete work shall conform to TXDOT Standard Specification Item No. 420, "Concrete Substructures". Forms will be required for all cast-in-place walls above the foundation. Where the surrounding material can be trimmed to a smooth vertical face, outside forms may be omitted.

Backfilling for manholes shall conform to the density requirements of Special Specification Item No. 120, "Utility Trenching and Backfill". Manhole construction in roadways may be staged to facilitate base construction. Manholes constructed to interim elevations shall be covered with steel plates of sufficient thickness to support vehicular traffic. Steel plates on wastewater

manholes shall be set in mortar to minimize inflow. Manholes shall be completed to finish elevation prior to placement of the roadway's finish surface. The excavation for completion of manhole construction shall be backfilled with cement stabilized sand with two (2) sacks of cement per cubic yard up to the bottom of Portland Cement pavement slabs or to within two (2) inches of finish elevation of asphaltic concrete pavements. The cement stabilized sand shall be a minimum of 12 inches thick.

After rings and covers are set to grade, the inside and outside of the concrete rings shall be wiped with mortar so placed as to form a durable water-tight joint smooth and even with the manhole cone section. No grouting shall be performed when the atmospheric temperature is at or below 40°F (5°C), and when necessary, because of a sudden drop in temperature, joints shall be protected against freezing for at least 24 hours.

When applying manhole protective coating, surface is to be prepped per NACE No.6 / SSPC – SP13. 125 mils of approved protective coating is to be applied per the manufacturer's instructions.

304.7 Acceptance Testing of Wastewater Manholes:

The Contractor shall notify the Inspector and Engineer 48 hours prior to beginning of manhole testing. The Contractor shall perform the testing for all sanitary sewer manholes in accordance with the following:

- A. All manholes must pass the leakage test.
- B. The Contractor shall test each manhole (after assembly and backfilling) for leakage, separate and independent of all other sanitary sewer piping, by means of either a hydrostatic test, vacuum test, or other methods approved by the Engineer.
- C. The Contractor is hereby instructed to conduct either Vacuum Testing or Hydrostatic Testing in the following manner:
 1. Vacuum Testing: Manholes shall be tested after construction/installation and backfilling with all connections (existing and/or proposed) in place.
 - a. Drop-connections and gas sealing connections shall be installed prior to testing.
 - b. The lines entering the manhole shall be temporarily plugged with the plugs braced to prevent them from being drawn into the manhole.
 - c. The plugs shall be installed in the lines beyond drop connections, gas sealing connections, etc.
 - d. Prior to performing the test, the Contractor shall plug all lift holes and exterior joints with a non-shrink grout and plug all pipes entering the manhole.
 - e. Only a cementitious coating may be applied.
 - f. Contractor shall use a minimum 60 inch-lb. torque wrench to tighten the external clamps that secure the test cover to the top of the manhole.

- g. The test head shall be inflated in accordance with the manufacturer's recommendations.
- h. A vacuum of 10 inches of mercury shall be drawn, and the vacuum pump will be turned off.
- i. With the valve closed, the level vacuum shall be read after the required test time.
- j. If the drop in the level is less than 1 inch of mercury (final vacuum greater than 9 inches of mercury), the manhole will have passed the vacuum test.
- k. The required test time is 2 minutes.

2. Hydrostatic Testing shall be conducted by utilizing approved plugs to seal all influent and effluent pipes in the manhole and filling the manhole to the top of the cone with water.
 - a. Additional water may be added over a 24-hour period to compensate for absorption and evaporation losses.
 - b. At the conclusion of the 24-hour saturation period, the manhole shall be filled to the top and observed.
 - c. Any measurable loss within a 30 minute period shall be considered an unsuccessful test and thus require the Contractor to assess the needed repairs, perform such repairs (subject to the approval of the Engineer), and notify the Inspector when the retest will be performed.
 - d. All effort, materials, or other costs shall be solely at the Contractor's expense.

3. Protective Coating Testing
 - a. Spark (Holiday)Test – After the coating product(s) have cured in accordance with manufacturer recommendations, all surfaces shall be inspected for holidays per NACE RPO188-99, Discontinuity (Holiday) Testing of New Protective Coatings on Conductive Substrates, or ASTM D4787, Standard Practice for Continuity Verification of Liquid or Sheet Linings Applied to Concrete Substrates. All detected holidays shall be marked and repaired according to the coating product(s) manufacturer's recommendations.
 1. Test voltage shall be a minimum of 100 volts per mil of coating system thickness.
 2. Detection of a known or induced holiday in the coating product shall be confirmed to ensure proper operation of the test unit.
 3. All areas repaired shall be retested following cure of the repair material(s).
 - b. Adhesion Test – Adhesion of the coating system to the substrate shall be confirmed in a minimum of 5% of the manholes coated (no fewer than one (1) manhole). After the coating product(s) have cured in accordance with manufacturer recommendations, testing

shall be conducted in accordance with ASTM D7234, Pull-Off Adhesion Strength of Coatings on Concrete Using Portable Pull-Off Adhesion Testers. Owner's representative shall select the manholes and areas to be tested.

4. Acceptance: Any manhole which fails the initial test must be repaired with a non-shrink grout or other suitable material based on the material of which the manhole is constructed.
5. The manhole shall be retested as described above until a successful test is attained.
6. After a successful test, the temporary plugs will be removed.
7. To ensure that the plugs have been removed, Contractor shall only do so in the presence of the Inspector.
 - a. Repairs to Existing Manholes: Any existing manhole which fails to pass the hydrostatic/vacuum test shall be closely examined by the Inspector and the Contractor to determine if the manhole can be repaired.
8. Thereafter, the Contractor shall either repair or remove and replace the manhole as directed.
9. Any manhole excavated for repairs or excavated for tie in, shall be backfilled with a minimum of 12 inches thickness of flowable fill to one foot above the top of the cone section to allow for the concrete ring encasement.
10. After abrading and cleaning, additional protective coating material shall be applied to the repair area.
11. All touch-up repair procedures shall follow the protective coating manufacturer's recommendations.

D. If a sanitary manhole fails to pass one of the above tests, it shall be repaired in accordance with the manufacturer's recommendations and re-tested. Should the test fail a second time, Contractor shall perform another leak test utilizing the other testing option in this specification. Should the test fail the third time, Contractor shall remove and replace the manhole and perform all the necessary test at no additional cost to NBU. Manholes shall not be accepted until it passes all tests.

E. Engineer of Record must witness all tests over the EARZ.

F. Inspection.

The Engineer or designated representative shall make a visual inspection of each manhole after it has passed the testing requirements and is considered to be in its final condition. The inspection shall determine the completeness of the manhole; any defects shall be corrected to the satisfaction of Engineer or designated representative.

304.8 Measurement:

All junction boxes and manholes of the type indicated shall be measured as units complete in place.

New manholes constructed to interim elevations to facilitate stage construction shall be measured as one unit regardless of the number of interim elevations constructed. All labor, materials and other expenses necessary for the stage construction shall be considered subsidiary to the completed unit. Abandonment of existing manholes shall be considered subsidiary to the completed unit, unless separate Pay Item is indicated on the Drawings and identified in Standard Contract Bid Form.

An "Extra Depth Manhole" will be measured by linear vertical foot of Standard Pre-cast Manhole with Pre-cast Base, Standard Pre-cast Manhole with CIP Base, Drop Manhole with Pre-cast Base, Drop Manhole with CIP Base, Special Manhole, Centered Tee Manhole, or Tangent Tee Manhole of the indicated size in excess of eight feet of depth. Manhole depth will be measured from the invert flow line to the finished surface elevation.

304.9 Payment:

Payment for completed junction boxes and manholes of the type indicated shall be made at the unit bid price for each. The unit bid price shall include all labor, equipment, materials, time and incidentals necessary to complete the work. When indicated in the Drawings, abandonment of existing manholes shall be made at the unit price for abandonment.

Payment for that portion of a Standard Pre-cast Manhole with Pre-cast Base, Standard Pre-cast Manhole with CIP Base, Drop Manhole with Pre-cast Base, Drop Manhole with CIP Base, Special Manhole, Centered Tee Manhole, or Tangent Tee Manhole in excess of eight (8) feet in depth will be made at the unit price bid for "Extra Depth Manhole" of the indicated type and size, complete in place.

Pay Item:	New Manhole Construction, ____ Dia.	Per Each
Pay Item:	Special Manhole, ____ Dia.	Per Each
Pay Item:	Drop Manhole, ____ Dia.	Per Each
Pay Item:	Centered Tee Manhole, ____ Dia. x ____ Dia.	Per Each
Pay Item:	Tangent Tee Manhole, ____ Dia. x ____ Dia.	Per Each
Pay Item:	Junction Box, ____ Ft x ____ Ft	Per Each
Pay Item:	Major Manhole Adjustment, ____ Dia.	Per Each
Pay Item:	Minor Manhole Adjustment, ____ Dia.	Per Each
Pay Item:	Abandonment of existing Manholes:	Per Each
Pay Item:	Extra Depth____ Manhole, ____ Dia.	Per Linear Vert. Foot

End

Item No. 312
Frames, Grates, Rings and Covers

312.1 Description

This item shall govern furnishing and installation of frames, grates, rings and covers for portland cement concrete manholes and other structures indicated on the Drawings. Rings and covers for polymer concrete manholes and structures shall meet the requirements of Item No. 303 "Polymer Concrete Manholes."

312.2 Submittals

The submittal requirements of this specification item must include manufacturer, model number, description, painting requirements and characteristics of frames, grates, rings, covers, height adjustment insert and nuts and bolts required for completion of the work.

312.3 Standards

The applicable provisions of the following standards shall apply as if written here in their entirety:

A. ASTM International (ASTM) Standards:

ASTM A27	Specifications for Steel Castings, Carbon, for General Application
ASTM A36	Specification for Structural Steel
ASTM A48	Specification for Gray Iron Castings
ASTM A536	Specification for Ductile Iron Castings

312.4 Materials

- A. The Contractor shall submit descriptive information and evidence that the materials and equipment the Contractor proposes for incorporation in the Work is the kind and quality that satisfies the specified functions and quality. New Braunfels Utilities Standard Products Lists (SPLs) form a part of these Specifications. Contractors may, when appropriate, elect to use products from the SPLs; however, submittal to the Engineer or designated representative is still required. If the Contractor elects to use any materials from these lists, each product shall be completely and clearly identified by its corresponding SPL number when making the product submittal.
- B. The purpose of the SPLs is to expedite the review by the Engineer or designated representative and, if necessary, New Braunfels Utilities Products Committee of Contractor product submittals. The SPL's should not be interpreted as being a pre-approved list of products necessarily meeting the requirements for a given construction Project. Items contained in the SPL cannot be substituted for items that are shown on the Drawings, called for in the specifications, or specified in the Bidding Requirements, Contract Forms and Conditions of Contract, unless approved by the Engineer or designated representative in conjunction with New Braunfels Utilities Standard Products Committee. The Standard Product List current at the time of plan approval will govern.

C. Welded Steel

1. Welded steel grates and frames shall conform to the number; size, dimensions and details indicated on the Drawings and shall be welded into an assembly in accordance with those details. Steel shall conform to the requirements of ASTM A36/A36M.

D. Castings

1. Castings, whether Carbon-Steel, Gray Cast Iron or Ductile Iron shall conform to the shape and dimensions indicated on the Drawings and shall be clean substantial castings, free from sand or blowholes or other defects. Surfaces of the castings shall be free from burnt on sand and shall be reasonably smooth. Runners, risers, fins and other cast on pieces shall be removed from the castings and such areas ground smooth. Bearing surfaces between manhole rings and covers or grates and frames shall be cast or machined with such precision that uniform bearing shall be provided throughout the perimeter area of contact. Pairs of machined castings shall be matchmarked to facilitate subsequent identification at installation with the exception of water and wastewater manhole and valve castings. These manhole and valve castings shall be fabricated with such draft, tolerances, bolt hole spacing, etc., that all rings and covers of a particular type or class are interchangeable and match-marking will not be required.
2. Steel castings shall conform to ASTM A27/27M. Grade 70-36 (480-250) shall be furnished unless otherwise specified on the Drawings.
3. Cast iron castings shall conform to ASTM A48, "Specification for Gray Iron Castings," Class 30.
4. Ductile Iron castings shall conform to ASTM A536, "Specification for Ductile Iron Castings." Grade 60-40-18 (415-275-125) shall be used unless otherwise indicated on the Drawings.

E. Manhole Cover Riser Rings

1. Height-adjustment inserts for wastewater manhole rings, which are used for raising standard manhole covers, shall be those models listed in New Braunfels Utilities Standard Products List.

F. Nuts and Bolts

1. Nuts and bolts shall be hex head 5/8" x 2.5" #11 National Coarse Thread, Type 316 stainless steel. For bolted manhole covers, a thin film of an approved "Anti-Seize" compound, approved by the Engineer or designated representative, shall be applied to all bolts.

G. Mortar

1. Unless otherwise specified or approved by the Engineer or designated representative, mortar shall conform to requirements of TXDOT Standard Specification item No. 421, "Hydraulic Cement Concrete."

312.5 Construction Methods

- A. Frames, grates, rings and covers shall be constructed of the specified materials in accordance with the details indicated on the Drawings or in New Braunfels Utilities Standard Details. The Frames, grates, rings and covers shall be placed carefully to the lines or grades indicated on the Drawings or as directed by the Engineer or designated representative.
- B. All welding shall conform to the requirements of the ANSI/AWS Structural Welding Code D1.1. Welded frames, grates, rings and covers shall be given 1 coat of a commercial grade red lead oil paint and 2 coats of commercial grade aluminum paint. All coats shall be a minimum of 1.5 mils, dry.
- C. Painting of gray iron castings will not be required, except when used in conjunction with structural steel shapes.

312.6 Measurement and Payment

Frames, grates, rings and covers will not be measured and payment for furnishing all materials, tools, equipment, labor and incidentals to complete the Work will be included in the Bid Items which constitute the complete structures.

End

315.1 Description

- A. This item shall govern the construction, labor, materials, equipment and associated appurtenances for cleaning sanitary sewer mains in preparation for rehabilitation. Cleaning shall remove debris and foreign materials from the mains and manholes in preparation for television inspection of sewer mains.
- B. Provide all television equipment, technical assistance, labor, tools and associated incidentals and appurtenances required to internally inspect the existing sewer mains and new sewer mains shown on the Drawings. Verify the mains are properly cleaned in preparation of inspection and/or rehabilitation. Locate service laterals and identify pipeline segments that require repair prior to the slip lining, pipe bursting or CIPP installation. The internal TV inspection shall also document the post rehabilitation status of the pipe for comparison and total acceptance of Work done. The video must show an inclinometer and the slope of the pipe. After cleaning, visually inspect the main sections by means of a closed-circuit television. Inspect one line section between manholes at a time, during which the sewer flow in that line section is properly controlled according to the flow control requirements of this Section.
- C. Provide control of sewer flow in conjunction with cleaning of sewer mains, and installation of replacement lines. Sewer flow diversion shall not cause surcharging or damage to public or private property. The sewer flow shall be plugged at an upstream manhole for the section of sewer line that is to be rehabilitated (by sliplining, cured in place pipe, or pipe bursting, etc.), for both installation and televised post installation inspection. Provide notification to property owners and tenants on flow control lines a minimum of 48 hours prior to institution of flow control measures.

315.2 Submittals

The submittal requirements of this specification item must include:

- A. Television inspection logs in paper and digital format.
- B. Digital format video of television inspection with an inclinometer visible on the video which notes the slope of inspected pipe.
- C. A graphed report of the inclinometer data gathered for each of the pipe segments.
- D. PACP Report and Top View Report and CD / DVD disks of CCTV completed.
- E. Flow Control Plan.
 - 1. Listing of safety precautions and traffic control measures.
 - 2. Certification that staff to be used for the Work are properly trained in confined space entry and hazardous environments.

315.3 Quality Assurance

- A. Equipment used shall be in good working order and provide continuous operation during TV/video inspection.

- B. CD / DVD disks shall be of good visual quality capable of slow motion and pausing without significant reduction of visual quality.
- C. Inspector(s) must be NASSCO / PACP certified and certification number submitted to NBU prior to commencement of work.
- D. Video image shall be calibrated using a Marconi Resolution Chart No. 1 or equivalent.

315.4 Equipment and Supplies

Cleaning Equipment

- A. Selection of cleaning equipment and method of cleaning must be based on the condition of the sewer mains at the time Work commences and is subject to the Owner's representative's approval. Operation of all cleaning equipment and devices shall be by personnel experienced in the use of such equipment. Owner may require the Contractor to demonstrate the performance capabilities of the proposed cleaning equipment. If the cleaning equipment does not give the desired results required by the Owner, Contractor shall use different equipment that does provide the desired results. More than one type of equipment/attachments may be required at any particular location.

Television Camera

- A. Camera used shall be 360-degree COLOR RVC camera. The television camera used for inspection must be specifically designed and constructed for internal inspection of sanitary sewer pipe with partial liquid flow through it. Lighting for the camera must allow a clear picture of the entire periphery of the pipe above the existing flow. The camera will operate in 100% humidity conditions. The camera, television monitor, and other components of the video system shall produce a picture quality satisfactory to NBU and, if unsatisfactory, equipment shall be removed and replaced with satisfactory equipment.

Video Recording Equipment

- A. Furnish video equipment to provide a visual and audio recording of all areas in the pipe. Video recording system at the site shall be capable of rewind, play back, slow motion and stop motion. The video shall be recorded on a DVD or equal portable storage device whose format is compatible with the latest version of Microsoft Windows. Also, an audio channel for clearly recording the camera locations and operator observations (cracks, leaks, service connections, etc.). The system shall continuously indicate distance, in feet, from manhole to manhole and the manhole-to-manhole run numbers on the video recording.

Communication Equipment

- A. When manually operated winches are used to pull the television camera through the main, set up two-way radio or other suitable means of communication between the two manholes of the line section being inspected to ensure good communications between members of the crew.

Power Supply

- A. Power supply shall be continuous. If night operations occur, supply all labor, power and lighting equipment for operations, traffic safety, permits, etc.

Methods of Flow Control

- A. Furnish temporary plugs as required to provide for diversion of flows and temporary isolation of sanitary sewer sections during rehabilitation. The plugs must be designed so all or any portion of the sewer flow can be released at any time. Insert a plug into the upstream manhole of the line section being worked. A plug in the downstream manhole may be required to prevent any backflow.
- B. Furnish bypass pumping equipment as required to provide for diversion of flows and temporary isolation of sanitary sewer sections during rehabilitation. When total bypassing and pumping are required, supply the pumps, conduits, and other equipment to divert the flow of sewer around the line section where rehabilitation work is to be performed. Begin the flow diversion at the upstream manhole. Divert flow to the downstream manhole of the line section being worked. The total bypass system must have sufficient capacity to handle peak flow during a wet weather event. Contractor is responsible for furnishing the necessary labor and supervision to set up and operate the pumping and bypassing. If pumping is required on a 24-hour basis or outside of specified normal work hours, use engines with Hospital Rated noise suppression equipment. A comprehensive bypass pumping plan shall be submitted by the Contractor as required in Paragraph 315.2.E.

315.5 Materials

Cleaning Materials

- A. Use only the type of cleaning material which will not create hazards to health or property or affect treatment plant processes.

315.6 Construction Methods

Cleaning

A. General:

1. All materials, equipment, and personnel necessary to complete the cleaning of the sanitary sewer main and manholes must be present on the Site prior to isolating the sewer manhole or line segment and beginning the cleaning process.
2. Clean the sewer lines from upstream to downstream, manhole to manhole. Remove dirt, grease, rocks, sand, roots and other materials and obstructions from the sewer lines and manholes or junction boxes. Dispose of removed materials in accordance with applicable federal, state, and local rules and regulations. It is the sole responsibility of the Contractor to secure a licensed legal dump site for the disposal of this material. Under no circumstances shall sewage or solids removed from the main or manhole be dumped onto streets or into ditches, catch basins, storm drains, or sanitary sewers. The cleaning shall leave the interior pipeline suitable for adequate television inspection and installation of replacement materials as applicable for the Project. Multiple passes and different equipment may be required. TV Inspection shall be used to verify acceptable completion of the cleaning.
3. Satisfactory precautions shall be taken to protect the sanitary sewer mains and manholes from damage that might be inflicted by the improper use of the cleaning process or equipment.

4. Any damages done to a sewer main and/or structure by the Contractor shall be repaired by the Contractor at no additional cost and to the satisfaction of the Owner.
5. Cleaning shall also include the manhole wall and junction box wall by high pressure water jet.
6. Contractor may be required to demonstrate the performance capabilities of the cleaning equipment proposed for use on the Project.
 - a. If the results obtained by the proposed sanitary sewer cleaning equipment are not satisfactory, Contractor shall use different equipment and/or attachments, as required, to meet the requirements of the Contract Documents.
 - b. More than one type of equipment/attachments may be required at a location.
7. When hydraulic or high velocity cleaning equipment is used, a suitable sand trap, weir, dam, or suction shall be constructed in the downstream manhole in such a manner that all the solids and debris are trapped for removal.
8. Whenever hydraulically-propelled cleaning tools which depend upon water pressure to provide their cleaning force, or any tool which retard the flow of water in the sanitary sewer lines are used, precautions shall be taken to ensure that the water pressure created does not cause any damage or surcharging to public or private property being served by the manhole section involved.
9. Any damage of property, as a result of surcharging, shall be the liability and responsibility of the Contractor.
10. The flow present in the sanitary sewer main shall be utilized to provide necessary fluid for hydraulic cleaning devices whenever possible.
11. When additional quantities of water from fire hydrants are necessary to avoid delay in normal working procedures, the water shall be conserved and not used unnecessarily.
 - a. No fire hydrant shall be obstructed or used when there is a fire in the area.
 - b. It is the responsibility of the Contractor to obtain the fire hydrant, water meter and all related charges for the set-up, including the water usage bills from respective water purveyor agency.
 - c. All expenses shall be considered incidental to the cleaning of the existing sanitary sewer mains.

B. New Mains:

1. All mains and manholes should be clean of debris prior to televising. The sanitary sewer main shall be flushed within 72 hours of televising and recording. This will assure the main is clean of debris as well as identify any potential sags within the main.
2. All sanitary sewer gravity lines shall be CCTV'd at the Contractor's expense; and a video recording of the subject mains provided prior to preliminary acceptance and at the 1-year warranty inspection by NBU. Televiewing may only occur after the stabilized subgrade has been installed and satisfactory density tests have been submitted to the City of New Braunfels. An NBU authorized representative must be present during the

televideo, unless otherwise approved by NBU. The sewer video inspection shall include rotating the camera lens to inspect the interior of each sewer lateral.

C. Existing Mains:

1. Recommended Cleaning

Purpose of Inspection	Recommended Cleaning
To determine the serviceability of the pipe, e.g. is the pipe silting up	Do not clean prior to CCTV inspection only clean if the camera cannot travel through the pipeline.
Inspection of structurally suspect pipelines	Do not clean prior to CCTV inspection. Cleaning may damage the pipeline.
To identify the general structural condition of the pipeline. Identification of small severity faults is not a concern.	Light cleaning to remove slime and spider webs.
To identify all faults in the pipeline, including small severity faults, e.g. in order to determine whether the pipeline is suitable of grouting.	Full cleaning of the pipeline to remove all foreign material.

D. Methods:

1. Hydraulic Cleaning:

- a. Hydraulic-propelled devices which require a head of water to operate must utilize a collapsible dam.
- b. The dam must be easily collapsible to prevent damage to the sewer main, property, etc.
- c. When using hydraulically-propelled devices, precautions shall be taken to ensure that the water pressure created does not cause damage or flood public or private property.
- d. Do not increase the hydraulic gradient of the sanitary sewers beyond the elevation that could cause overflow of sewage into area waterways or laterals.
- e. The flow present in the sanitary sewer main shall be utilized to provide necessary fluid for hydraulic cleaning devices whenever possible.

2. High-Velocity Cleaning:

- a. Cleaning equipment that uses a high velocity water jet for removing debris shall be capable of producing a minimum volume of 50 gpm, with a pressure of 1500 psi for the sanitary sewer line and 3500 psi for the (manhole) structure at the pump.
- b. Any variations to this pumping rate must be approved, in advance, by the Owner.
- c. To prevent damage to older sewer mains and property, a pressure less than 1500 psi can be used.

- d. A working pressure gauge shall be used on the discharge of all high-pressure water pumps.
- e. For sewers 18 inches and larger in diameter, in addition to conventional nozzles, use a nozzle which directs the cleaning force to the bottom of the pipe.
- f. Operate the equipment so that the pressurized nozzle continues to move at all times.
- g. The pressurized nozzle shall be turned off or reduced anytime the hose is on hold or delayed in order to prevent damage to the line.

3. Mechanical Cleaning:

- a. Mechanical cleaning, in addition to normal cleaning when required, shall be with approved equipment and accessories driven by power winching devices.
- b. Submit the equipment manufacturer's operational manual and guidelines to the Owner, which shall be strictly followed unless modified by the Owner.
- c. All equipment and devices shall be operated by experienced operators so that they do not damage the pipe in the process of cleaning.
- d. Buckets, scrapers, scooters, porcupines, kites, heavy duty brushes, and other debris-removing equipment/accessories shall be used as appropriate and necessary in the field, in conjunction with the approved power machines.
- e. The use of cleaning devices such as rods, metal pigs, porcupines, root saws, snakes, scooters, sewer balls, kites, and other approved equipment, in conjunction with hand winching device, and/or gas, electric rod propelled devices, shall be considered normal cleaning equipment.

E. Considerations - Consideration needs to be given to ensure that:

- 1. Adjacent properties are not damaged or flooded.
- 2. Sewer overflows do not occur.
- 3. The sewer being cleaned is not damaged.
- 4. All debris from the cleaning is collected and removed from the sewer system.

Televising / Inspection

- A. The pipeline should be inspected as soon as possible after it has been cleaned. In any case the inspection should be completed within seven days of cleaning. For pipes that have material with high levels of debris or grease flowing through them seven days may be too long and re-cleaning may be required.
- B. Inspection shall be done one manhole section at a time.
- C. Locate video vehicle on upstream side of manhole. Recording shall begin during the lowering of the camera into the manhole opening. Video in the downstream direction such that camera movement is with the flow. Camera lens shall be positioned looking along the

axis of the sewer. The camera axis should be within $\pm 10\%$ of the vertical sewer centerline of the pipe. For oval shaped pipes, the camera shall be positioned vertically above the invert at a height $\frac{2}{3}$ of the vertical dimension of the pipe.

D. Insert the camera in the upstream manhole after flow restrictions required have been accomplished. Flow into the system being inspected shall be stopped, with the exception of service laterals into the system being inspected. Move camera through the pipe lines at a moderate speed not exceeding 30 feet per minute. Excessive use of the pan and tilt features should be avoided. Stop camera at locations where one or more of the following conditions is observed:

1. Infiltration/inflow sources.
2. Service Laterals.
3. Structural defects including broken pipe; collapsed or collapsing pipe, cracks, deterioration, punctures, etc.
4. Abnormal joint conditions such as misalignments, open joints and joints not sealed.
5. Unusual conditions such as root intrusion, protruding pipes, in-line pipe size changes, mineral deposits, grease and obstructions.

E. Stop camera long enough for a thorough visual inspection of the conditions. All such conditions as specified above, along with the corresponding PACP code for each condition, shall be audio recorded on video and the inspection log sheet. Move the camera and rotate to obtain optimum view of the conditions. Each condition should be framed as to provide a full perspective. If requested by an NBU representative, view problem areas in the opposite direction by pulling the TV camera from the opposite direction at no additional cost to the NBU.

1. While the camera is stopped at each service connection, rotate the camera so as to be able to view the service connection for a length of time that enables a good visual inspection of the service connection for damage and infiltration. Be responsible for measurements such as service lateral locations, if used for subsequent rehabilitation work.
2. When, during the inspection operation, the television camera will not pass through the entire manhole-to-manhole section, set up equipment so that the inspection can be performed from the opposite manhole at no additional cost to NBU. All reasonable effort should be given to video the entire segment including the removal of obstructions, reversals, location/exposure of buried manholes, use of more versatile equipment, etc.
3. Any defects or anomalies detected on new construction that does not meet NBU requirements shall be corrected by the Contractor prior to NBU acceptance. Once corrected, the portion(s) shall be videoed, again, to assure the modification(s) was made correctly.

F. Move the camera through the main in either direction at a moderate rate, stopping when necessary to permit proper documentation of the sewer line condition. In no case shall the television camera be pulled at a speed greater than 30 feet per minute. Use manual winches, power winches, TV cable, and powered rewinds or other devices that do not obstruct the camera view or interfere with proper documentation of the sewer main condition. Identify locations of defects by means of a measurement device (distance meter) above ground. Marking on the cable or similar practices that require interpolation for depth

of manhole is not allowed. Check accuracy of the distance meter with a walking meter, roll-a-tape, or other suitable device satisfactory to the Owner.

Flow Control

A. Provide flow control measures needed to allow for isolation of individual sanitary sewer sections for rehabilitation work. Prior to beginning Work, Contractor shall submit a written plan for flow control as noted in Paragraph 1.02. In providing this Work, protect the sewer main from damage that might result from sewer surcharging. In addition, take precautions necessary to ensure that sewer flow control operations do not cause flooding or damage to public or private property being served by the sewer mains involved. Contractor is advised to schedule its Work in section lengths such that in the event of a wet weather event that might cause an increase in the sewer flow, the Work can be adequately secured, the flow diversion stopped, and flow resumed back in the existing main expeditiously and without damage to the new Work.

1. Notify property owners and tenants a minimum of 48 hours prior to scheduled flow control diversion operations.
2. Locate flow diversion equipment, facilities, and activities such that local traffic, private property access, or any public activities are not interrupted.
3. Where diversion piping crosses side streets, alleys and driveways, provide asphalt ramps and covers over the piping to facilitate passage of any traffic. Provide pedestrian cross-over ramps and walkways where needed or requested by the Owner. Do not open cut streets, alleys, or driveways to bury piping.
4. Divert incoming flow from all service connections and laterals. Provide all the necessary materials and equipment to tie this flow into the main diversion system.
5. Flow diversion materials and equipment must be in place and successfully operating for a period of 4 hours prior to starting any rehabilitation work requiring flow diversion.
6. Reduce flow to within the limits required for TV inspection. After the Work has been completed, restore flow to normal.
7. Keep pumping engine noise complaints from the citizens to a minimum. Owner's representative may terminate all pumping activities if noise control is not adequately addressed.

Repair of Damaged Main

A. If the main is damaged and requires repair prior to rehabilitation, make such repairs as directed by the Owner's representative. Any pavement cut excavation and repair must comply with the details in the Drawings. If the main is damaged through the negligence of the Contractor, make repairs as approved by the Owner's representative at no additional cost to the Owner.

Documentation

A. Television Inspection Logs: Keep printed location records that clearly show the camera location in relation to an adjacent manhole for each infiltration point or defect observed during inspection. In addition, record other points of significance such as locations of

service line entry points, unusual conditions, roots, sewer connections, broken pipe, presence of scale and corrosion, and other discernible features. Submit a copy of such records and copies of the video in digital format to the Owner's representative.

B. Furnish a detailed report and digital video of the system inspected. The minimum information supplied shall be the following:

1. Name and address of Contractor and the Developer.
2. Name of Project, system(s) inspected, and Project's representative involved.
3. Log reports:
 - a. PACP Report and Top View Report for each section of pipe using NASSCO's PACP Standards unless otherwise instructed by NBU.
 - b. Separate line for each deficiency and location
 - c. Corresponding video and location of each section of pipe and deficiencies on digital video.
4. Video shall be labeled with the following information:
 - a. System that is video (street name and manhole to manhole numbers) and log report number corresponding to video
 - b. Date video was recorded
 - c. Contractor's name and representative
 - d. Project's name, if applicable

315.7 Measurement and Payment

Payment for CCTV of lines will be made at the unit price bid per linear foot for the various sizes of pipe, of the materials and type indicated. Payment shall include all labor, materials, equipment, cleaning, by-pass pumping, and all other incidentals and appurtenances necessary to complete the work.

Payment, when included as a Contract pay item, will be made under one of the following:

Pay Item: Pipe, Dia. (all depths)

Per Linear Foot

End

**Item No. 330
Wastewater By-Pass Pumping**

330.1 Description

This item shall govern the construction, labor, materials, equipment and incidentals necessary to implement a temporary bypass pumping system for the purpose of diverting existing sewer flows around the work area regardless of number of locations, set-ups, length and duration, and shall be for the duration of the Project.

330.2 Submittals

The submittal requirements of this specification item must include:

A. Manufacturer's product data, instructions, recommendations, Shop Drawings, and necessary certifications in order for the proposed Bypass Pumping Plan to be reviewed. The plan shall include, but not be limited to, the following:

1. Staging areas for pumps.
2. Sewer plugging method and types of plugs.
3. Number, size, material, location and method of installation of suction piping.
4. Number, size, material, location and method of installation of discharge piping.
5. Bypass pump sizes, capacity, number of each size to be on site, including spare pump, and power requirements.
6. Calculations of static lift, friction losses, and flow velocity (pump curves showing pump operating range shall be submitted based on bypass pumping schedule at the end of this Section).
7. Standby power generator size and location.
8. Downstream discharge plan.
9. Calculations for selection of bypass pumping pump size.
10. Method of noise control for each pump and/or generator if required.
11. Method of protecting discharge manholes or structures from erosion and damage.
12. Schedule for installation and maintenance of bypass pumping lines.
13. Schedule and emergency contact information for on-site operator or staff in responsible charge.

330.3 Quality Assurance

A. Contractor shall demonstrate that the temporary bypass pumping system is in good working order and is sufficiently sized to successfully handle all sanitary sewer flows by performing a test run for a period of 24 hours prior to beginning Work.

- B. Contractor shall be required to have all materials, equipment and labor necessary to complete the repair and/or replacement on the Site prior to isolating the sewer manhole or line segment and beginning flow diversion or pumping operations.
- C. Contractor shall provide both a strobe light type, high level alarm, as well as alarm notification to their cell phones, as well as other appointed personnel to be identified by the Owner and ensure adequate alarm notification is attained prior to actual startup of the test period.
- D. During active operations, Contractor shall have personnel on the Site 24/7. If multiple locations are active within a project site, Contractor must maintain a ratio of 2 to 1, active bypass pumping areas to personnel. If the two sites are more than 500 feet away from each other or the high-level strobe alarm cannot be seen from each location, then the Contractor must provide dedicated personnel at every site.
- E. Contractor shall coordinate all activities through Engineer and Owner.
- F. It is anticipated that bypass pumping shall be required at the following locations:
 1. **[Specify project specific information for locations that will require bypass pumping. This is not meant to be a bypass pumping plan.]**

330.4 Materials

- A. Contractor shall provide all necessary pumping equipment, piping and all other necessary appurtenances in order to maintain adequate and reliable sanitary sewer flow in the sewer system (excluding manholes) at all times during construction. All materials, equipment, etc., must be in good condition and should not have visible damage such as cracks, holes, foreign material, blisters, etc. Contractor must place a sign and provide an emergency contact on site stating, "In the event of a sewer overflow for other issue, call the emergency contact listed" for citizens to report issues.
- B. High-Density Polyethylene (HDPE) is the preferred pipe material for all bypass piping. HDPE must be used when bypass discharge piping will be going through streams, storm water culverts, and/or environmentally sensitive areas.
 1. HDPE pipe must be assembled and joined using couplings, flanges or fusion welding in order to avoid joint leakage.
 2. HDPE fusion welding must be performed by personnel certified as fusion technician(s) by the manufacturer of HDPE pipe and/or fusing equipment.
 3. The bypass pumping plan shall indicate the proposed DR of the pipe to be used.
- C. Pipe material other than HDPE shall be submitted to the Engineer for approval. Neither "irrigation type" pipe nor glued PVC pipe will be permitted.
- D. Plugs must be selected and installed according to the size of the line to be plugged. An additional plug must be on-site and ready to be installed in the event a plug fails or becomes dislodged. Plug(s) will be reviewed by the inspector and/or Engineer for defects that might lead to failure prior to being installed. It is also imperative that the Contractor notify the inspector at the completion of the Work in order to verify that all plugs have been removed from the system.

330.5 Equipment

- A. Pumps must be fully automatic self-priming units that do not require the use of foot-valves or vacuum pumps to prime the system. Pumps may be electric or diesel powered. The primary pump must be a grinder or chopper pump, in order to reduce the potential for debris to complicate the safe operation of the pumps.
- B. Contractor shall have one backup pump, equal in capacity to the largest pump in the system, connected to the temporary bypass pumping system and ready for operation in case any of the primary pumps fail. The backup pump shall not be used in Contractor's calculations for determining the pumping capacity requirements for the stated flow conditions.
- C. Sound-attenuated pump enclosures shall be required on all projects where the bypass pumps are located within 100 feet of any residence, business, park, or other presence of people. If a pump is not located within 100 feet of a residential district, the pump enclosures must suppress sound to 85 decibels at all times. If the pump is located within 100 ft of a residential district, the pump enclosure must limit the sound to 85 decibels between 10:00 A.M. and 10:00 P.M and to 75 decibels at all other times as stated in the City of New Braunfels Noise Ordinance.

330.6 Construction Methods

Preparation:

- A. Obtain the Engineer's approval of location of bypass pipelines, staging areas and pump locations prior to installation.
- B. Obtain approvals for placement within public or private property.

Construction, Installation, and Removal:

- A. During construction, it will be the Contractor's responsibility to maintain a safe and secure environment at all times. All provisions and/or requirements of the temporary bypass pumping plan must be followed throughout the course of any bypass flow operations. Contractor must notify the Owner 72 hours prior to commencing the bypass pumping operations.
- B. Contractor shall provide continuous supply on-site fuel storage sufficient for 24-hour operation of the bypass pumping installation.
- C. Contractor shall protect all components of the bypass operations from vandalism and vehicular damage by making the site secure.
- D. Contractor shall minimize sewer odors by using lids, shroud covers, or any method approved by the Inspector or Engineer.
- E. Contractor shall be solely responsible for any and all damages to private and/or public property caused by or during the installation, operation, and/or removal of the bypass pumping system.
- F. All piping, joints and accessories shall be designed to withstand at least twice the maximum system pressure, or a minimum of 50 psi, whichever is greater.

- G. During flow diversion and/or pumping, no sewage shall be leaked, dumped, or spilled in or onto, any area outside of the existing sanitary sewer system.
- H. When flow diversion and/or pumping operations are complete, all pumping shall be drained into the sanitary sewer prior to disassembly and all flow management components shall be removed.

Bypass Pumping Schedule:

- A. Flows shown below are based on modeled flows.
- B. It is the Contractors responsibility to verify the flows with the city prior to development of bypass pumping plan.

Sanitary Sewer Manhole / Location (SSMH No. X or STA _+__ or Line Name and Size)	Average Dry Weather (MGD or GPM)	Peak Wet Weather (MGD or GPM)
	X.XX	X.XX

330.7 Measurement and Payment

Measurement:

- A. Measurement for the Work specified herein will be by lump sum, as the Work progresses, and as required by the Contract Documents.
- B. Temporary bypass pumping not specifically required on the Drawings but directed by the Engineer and/or the inspector, will not be measured separately for payment and will be considered incidental. Repair or replacement of manhole sections disturbed as a part of the temporary bypass pumping operations is considered incidental to the line item and will not be measured separately for payment.

Payment:

- A. Partial payment of the lump sum bid item for temporary bypass pumping shall be in accordance with the following:
 1. When initial setup and operation of the temporary bypass pumping system begins, 40 percent of the line item will be paid.
 2. The remaining portion of the line item will be paid when the temporary bypass pumping system operations for the entire job are completed.

End

Item No. 505
Concrete Encasement and Encasement Pipe

505.1 Description

This item shall govern the furnishing of materials and the methods of constructing a Portland cement concrete encasement or encasement pipe.

505.2 Submittals

The submittal requirements of this specification item must include:

- A. Type, of pipe, construction methods and sequence,
- B. Aggregate types, gradations and physical characteristics for the Portland cement concrete mix,
- C. Proposed proportioning of materials for the mortar mix.

505.3 Materials

A. Portland Cement Concrete

The Portland cement concrete shall conform to Class B Concrete per the requirements of TXDOT Standard Specification Item No. 421, "Hydraulic Cement Concrete"

B. Steel Encasement Pipe

1. Steel Pipe shall conform to ASTM A53, Schedule 40. Extra Heavy Weight shall meet the requirements of ASTM A53, Schedule 80. Casing pipes shall have a minimum thickness as indicated below or as otherwise required by the authority having jurisdiction, and shall be considered the minimum thickness acceptable.
2. Pipe used as casing of a separate carrier pipe shall be new, smooth bore, steel pipe, with a coal-tar protective coating in accordance with the requirements of C203 both inside and outside. Joints shall be welded to form a true alignment of each pipe length.

Nominal Diameter of Steel Casing Pipe (Inches)	Minimum Wall Thickness of Steel Casing Pipe (Inches)	
	Roadway/Highway Crossing	Railway Crossing
16	0.250	0.282
18	0.250	0.313
24	0.375	0.375
30	0.4375	0.469
36	0.500	0.532
42	0.500	0.625
48	0.500	0.688

C. End Seals

1. End seals shall be designed to seal the annular space between the casing pipe and the carrier pipe at the ends of the casing pipe.

2. Approved Manufacturers:
 - a. Advance Products & Systems, LLC
 - b. Cascade Waterworks Manufacturing Company
 - c. CCI Piping Systems
 - d. Approved equal.

D. Grout

Grout shall consist of not less than 6 sacks Portland cement per cubic yard and clean washed sand mixed with water. The grout shall have a consistency such that the grout will flow into and completely fill all voids. If allowed by the Engineer or designated representative, an air entraining admixture may be added to facilitate placement.

505.4 Construction Methods

- A. When indicated on the Drawings or acceptable to Engineer or designated representative, concrete encasement shall be placed to protect the pipe. Pipe or bedding shall not be placed where:
 1. the top of the pipe would have less than 48 inches of cover,
 2. the ground water invades the trench, or
 3. the trench bottom is of unstable material.
- B. If either of these conditions is encountered, the Engineer or designated representative shall be notified and may direct the Contractor to:
 1. encase the pipe with concrete,
 2. change pipe material, or
 3. use a higher strength class of pipe.
- C. Concrete encasement shall extend from 6 inches below to 6 inches above the outer projections of the pipe over the entire width of the trench in accordance with Standard Detail 310, "Concrete Encasement".

505.5 Measurement and Payment

- A. Concrete encasement will be measured by the lineal foot, for size of pipe being encased, complete in place. The measurement will be made between ends of the encasement, along the central axis as installed.
- B. Encasement pipe will be measured by size of encasement installed, complete in place. The measurement will be made between the ends of the pipe, along the central axis as installed.

505.6 Payment

- A. Work performed and materials furnished as prescribed by this item will be subsidiary to Item No. 510, "Pipe" unless included as a separate pay item in the contract. When included for payment, it shall be measured as provided under "Measurement" and will be paid at the unit

bid price per lineal foot for "Concrete Encasement" of the size indicated on the Drawings. The unit bid price shall include full compensation for furnishing all materials, pipe for all preparation, hauling, installation and for all labor, tools, equipment and incidentals necessary to complete the work, including bench excavation and disposal of surplus material.

Payment, when included as a contract Pay Item, will be made under one of the following:

Pay Item: Concrete Encasement for Dia. Pipe

Per Linear Foot.

Pay Item: Dia. Steel Encasement Pipe

Per Linear Foot

End

**Item No. 507
Bulkheads****507.1 Description**

This item shall govern furnishing and installing plywood or end caps as a temporary utility plug at locations indicated on the Drawings or as directed by the Engineer or designated representative. The work will be placed in conjunction with installation of a pipe where a continuation of the utility system will be performed later.

507.2 Submittals

The submittal requirements of this specification item must include the type (wood, plastic, rubber, etc.) and application (pipe characteristics and location) of bulkheads.

507.3 Material

Plywood shall be construction grade, $\frac{3}{4}$ inch thick and need not be new or treated. End caps may be plastic, vitrified clay pipe, rubber or concrete.

507.4 Construction Methods

After installation of the utility requiring temporary bulkheading, an end cap or a section of plywood, having dimensions at least six (6) inches in excess of the outside pipe diameter shall be attached to the exposed bell or spigot and backfilled immediately after installation. Care shall be exercised to prevent the backfill material from entering the pipe.

Bulkheads used with staged construction shall be sound, reasonably free of knots and warps and have a three (3) inch nominal thickness.

507.5 Measurement and Payment

Bulkheading will not be measured and paid for separately but shall be considered subsidiary to the pipe or manhole for which payment is made.

END

**Item No. 510
Pipe****510.1 Description**

This item shall consist of furnishing and installing all pipe and/or materials for constructing water mains, force mains, sanitary sewers, laterals, stubs, and service connections including all applicable Work such as jointing, prescribed under this item in accordance with the provisions of the Edwards Aquifer Protection Ordinance, when applicable, and New Braunfels Utilities Design Criteria Manual. The pipe shall be of the sizes, types, class and dimensions indicated or as designated by the Engineer/Architect (E/A) and shall include all joints or connections to new or existing mains, pipes, sewers, manholes, etc., as may be required to complete the Work in accordance with specifications and published standard practices of the trade associations for the material specified and to the lines and grades indicated on the plans. This item shall include any pumping, bailing, drainage and Item No. 121, "Trench Safety Systems" for trench walls, when indicated or applicable. Trenching and back fill shall be covered under Item No. 120, "Utility Trenching and Backfill." Acceptance testing shall be covered under Item No. 515, "Testing and Acceptance."

510.2 Submittals

- A. Furnish Shop Drawings, product data, design calculations and test reports as described below:
 1. Certified copies of mill tests confirming the type of materials used in steel plates, mill pipe flanges and bolts and nuts to show compliance with the requirements of the applicable standards.
 2. Complete and dimensional working drawings of all pipe layouts. Shop Drawings shall include the grade of material, size, wall thickness of the pipe and fittings, type and location of fittings and the type and limits of the lining and coating systems of the pipe and fittings.
 3. Product data to show compliance of all couplings, supports, fittings, coatings and related items.

510.3 Standards

- A. The applicable provisions of the following standards shall apply as if written here in their entirety:
 1. American Water Works Association (AWWA):

AWWA C104	Cement-Mortar Lining for Ductile Iron Pipe and Fittings
AWWA C105	Polyethylene Encasement for Ductile-Iron Pipe Systems
AWWA C110	Ductile-Iron and Gray-Iron Fittings
AWWA C111	Rubber Gasket Joints for Ductile-Iron
AWWA C115	Flanged Ductile-Iron Pipe with Ductile-Iron or Gray-Iron

AWWA C150	Thickness Design of Ductile-Iron Pipe
AWWA C151	Ductile-Iron Pipe, Centrifugally Cast, Sizes 3 inches through 64 inches
AWWA C153	Ductile-Iron Compact Fittings
AWWA C600	Installation of Ductile Iron Mains and their Appurtenances
AWWA C602	Cement-Mortar Lining of Water Pipelines, 4 inches and larger in Place.
AWWA C605	Underground Installation of Polyvinyl Chloride (PVC) and Molecularly Oriented Polyvinyl Chloride (PVCO) Pressure Pipe and Fittings.
AWWA C800	Underground Service Line Valves and Fittings
AWWA C900	Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 inches through 60 inches
AWWA M23	PVC Pipe – Design and Installation.
AWWA M41	Ductile – Iron Pipe and Fittings

2. ASTM international (ASTM):

ASTM D1784	Standard Specification for Rigid Poly(Vinyl Chloride) (PVC) Compounds and Chlorinated Poly(Vinyl Chloride) (CPVC) Compounds
ASTM D2241	Standard Specification for Poly(Vinyl Chloride) (PVC) Pressure-Rated PVC Pipe (SDR) Series
ASTM D3034	Standard Specification for Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings
ASTM D3139	Standard Specification for Joints for Plastic Pressure Pipes Using Flexible Elastomeric Seals
ASTM D3212	“Standard Specification for Joints for Drain and Sewer Plastic Pipes Using Flexible Elastomeric Seals”
ASTM F477	Standard Specification for Elastomeric Seals (Gaskets) for Joining Plastic Pipe
ASTM F679 & Annex	Standard Specification for Poly(Vinyl Chloride) (PVC) Large Diameter Plastic Gravity Sewer Pipe and Fittings
ASTM F1674	Standard Test Method for Joint Restraint Products for Use with PVC Pipe

3. NSF International

NSF 61	Drinking Water System Components – Health Effects
--------	---

510.4 Materials

A. Fire Lines

Fire line leads and fire hydrant leads shall be ductile iron, only.

B. Force Mains

All wastewater force mains shall be constructed of the following pipe materials:

- a. Ductile iron pipe of pressure class 250 minimum for pipe greater than 12-inch size, and ductile iron pipe pressure class 350 for pipe 12-inch size and smaller,
- b. D2241 PVC Pressure Class 200 (SDR 21) for pipe 12-inch size and smaller, integrally colored green,
- c. PE4710 HDPE DR-9 with a minimum diameter of four (4) inches,
- d. Polyvinyl Chloride Pipe meeting all requirements of section 510.4.D, integrally colored green,
- e. Ductile iron wastewater pipe shall be in accordance with New Braunfels Utilities Standard Products List and shall have a corrosion resistant interior lining acceptable to the Owner.

C. Ductile Iron Water Mains

- a. All water distribution pipe and fittings shall be listed in the Fire Protection Equipment Directory published by the Underwriter's Laboratories, Inc., or shall be Factory Mutual approved for fire service.
- b. Ductile Iron Pipe - Pipe shall be ductile iron pipe meeting all requirements of standards as follows:
 - i. For push-on and mechanical joint pipe: AWWA C151
 - ii. For flanged pipe: AWWA C115

Barrels shall have a nominal thickness required by Table 1 of AWWA C115, which thickness corresponds to Special Class 53 in sizes through 54 inch, and Class 350 in 60 and 64-inch sizes. Flanges shall be ductile iron (gray iron is not acceptable); they shall be as shown in ANSI/AWWA C115/A21.15 and shall conform to dimensions shown in Table 2 and Figure 1 of AWWA C115. These flanges are the same in all respects as flanges shown in ANSI/AWWA C110/A21.10 for fittings and are standard for all flanges used with pipe, valve, and equipment units in the water distribution and wastewater force main systems. Flanges shall be fabricated and attached to the pipe barrels by U.S. fabricators using flanges and pipe barrels of U.S. manufacture. If fabrication is to be by other than the pipe barrel manufacturer, a complete product submittal and approval by New Braunfels Utilities will be required. Additionally, such fabricator shall furnish certification that each fabricated joint has been satisfactorily tested hydrostatically at a minimum pressure of 300 psi.

- iii. Except as described above for flanged pipe (Thickness Class 53) and where not otherwise indicated, ductile iron pipe shall be minimum Class 250 as defined by ANSI/AWWA C150/A21.50-current; all ductile iron pipe and flanges shall meet the following minimum physical requirements:
 1. Grade 60-42-10:
 - a. Minimum tensile strength: 60,000 psi (414 mPa).

- b. Minimum yield strength: 42,000 psi (290 mPa).
 - c. Minimum elongation: 10 percent.
- 2. Grade 70-50-05 (for AWWA C115 pipe):
 - a. Minimum tensile strength: 70,000 psi (483 mpa).
 - b. Minimum yield strength: 50,000 psi (345 mPa).
 - c. Minimum elongation: 5 percent.
- c. Ductile Iron Fittings:
 - i. Fittings shall be push-on, flanged or mechanical joint as indicated or approved and shall meet all requirements of standards as follows:
 - 1. Sizes 4 inch through 24 inch: AWWA C110 or AWWA C153
 - 2. Sizes larger than 24 inch: AWWA C110.
- d. Marking
 - Each pipe joint and fitting shall be marked as required by the applicable AWWA specification. This includes in all cases: Manufacturer's identification, Country where cast, year of casting, and "DUCTILE" or "DI". Barrels of flanged pipe shall show thickness class; others shall show pressure class. The flanges of pipe sections shall be stamped with the fabricators identification; fittings shall show pressure rating, the nominal diameter of openings and the number of degrees for bends. Painted markings are not acceptable.
- e. Linings and Coating:
 - i. Interior surfaces of all ductile iron water pipe shall have cement-mortar lining in accordance with AWWA C104 and bituminous seal coat.
 - ii. Interior surfaces of all ductile iron wastewater and force main fittings shall be coated with Protecto 401. Lining primers, applications, and thicknesses shall be in accordance with manufacturer's recommendations for sanitary sewer applications, but shall not be less than 40 mils.
 - iii. Exterior surfaces for buried pipe and fittings shall be coated with a 1 mil bituminous coating in accordance with AWWA C110 and C151, unless specified otherwise.
 - iv. Exterior surfaces for pipe and fittings installed above grade or within vaults shall be coated as required by the applicable coating specification.
- f. Joint Materials
 - i. Gaskets for mechanical joints shall conform to ANSI/AWWA A21.11/C111.
 - ii. Joining of slip joint iron pipe shall, without exception, be accomplished with the natural or synthetic rubber gaskets of the manufacturer of that particular pipe being used. A joint lubricant shall be used and applicable recommendations of the manufacturer shall be followed.

- iii. Gaskets for flanged joints shall be continuous full face gaskets, of 1/8 inch minimum thickness of natural or synthetic rubber, cloth-reinforced rubber or neoprene material, preferably of deformed cross section design and shall meet all applicable requirements of ANSI/AWWA A21.11/C111 for gaskets. They shall be manufactured by, or satisfy all recommendations of, the manufacturer of the pipe/fittings being used and be fabricated for use with Class 125 ANSI B16.1 flanges.
- iv. Tee-head bolts, nuts and washers for mechanical joints shall be high strength, low alloy, corrosion resistant steel stock equal to "COR-TEN A" having UNC Class 2 rolled threads or alloyed ductile iron conforming to ASTM A 536; either shall be fabricated in accordance with ANSI/AWWA A21.11/C111.
- v. Hex head bolts and nuts shall satisfy the chemical and mechanical requirements of ASTM A449 SAE Grade 5 plain, and shall be fabricated in accordance with ASTM B 18.2 with UNC Class 2 rolled threads.
- vi. Either Tee-Head or Hex-Head bolts, nuts and washers as required, shall be protected with bonded fluoro-polymer corrosion resistant coating where specifically required by the E/A.
- vii. All threaded fasteners shall be marked with a readily visible symbol cast, forged or stamped on each nut and bolt, which will identify the fastener material and grade. The producer and the supplier shall provide adequate literature to facilitate such identification; painted markings are not acceptable.

g. Polyethylene Film Wrap

All iron pipe, fittings and accessories shall be wrapped with standard 8 mil (minimum) low density polyethylene film or 4-mil (minimum) cross laminated high-density polyethylene conforming to AWWA C105, with all edges overlapped and taped securely with duct tape to provide a continuous wrap to prevent contact between the piping and the surrounding backfill. Repair all punctures of the polyethylene, including those caused in the placement of bedding aggregates, with duct tape to restore the continuous protective wrap before backfilling.

D. Polyvinyl Chloride (PVC) Water Pipe

a. General

All polyvinyl chloride (PVC) water pipe shall be of the rigid (unplasticized) type and must bear the National Sanitation Foundation seal of approval for potable water pipe. Each joint of pipe shall consist of single continuous extrusion; bells or other components attached by solvent welding are not acceptable. Pipe shall be pressure rated at 305 psi (DR-14) or 235 psi (DR-18) as indicated. All pipe 4 inches and larger must be approved Underwriter's Laboratories for use in buried water supply and fire protection systems.

b. Pipe shall have push-on, rubber gasket joints of the bell and spigot type with thickened integral bells with rubber gasket joints. The wall thickness of each pipe bell and joint coupling must be greater than the standard pipe barrel thickness. Clearance must be provided in every gasket joint for both lateral pipe deflection and for linear expansion and contraction. Concrete thrust blocking shall be placed behind bends and tees when required by the E/A. Concrete support cradles or blocking shall be required for support

of all fire hydrants, valves and AWWA C110 fittings; such support shall be provided for AWWA C153 fittings when required by the E/A.

c. Applicable Specifications

Except as modified or supplemented herein, PVC pipe shall meet the following standards:

- i. AWWA C900, DR 18 or DR 14 for PVC Pressure Pipe, in 4, 6, 8, 12, 16, and 24 inch nominal sizes, having Cast Iron Pipe size outside diameters.
- ii. Fittings used with PVC Pressure pipe shall be AWWA C110 or AWWA C153 compact ductile iron fittings.

d. Material Requirements

All pipe and fittings shall be made from clean, virgin, NSF approved, Class 12454B PVC. Clean reworked materials generated from the manufacturers own production may be used within the current limits of the referenced AWWA C900.

e. Marking

Permanent marking on each joint of pipe shall include the following at intervals of not more than 5 feet:

- i. Nominal pipe size and OD base (e.g., 4 CIPS).
- ii. Type of plastic material (e.g., PVC 12454B).
- iii. Dimension Ratio (e.g., DR 18).
- iv. Pressure Class (e.g., PC 235).
- v. AWWA designation with which the pipe complies (e.g., AWWA C900-16).
- vi. Manufacturer's name or trademark and production run record
- vii. The National Sanitation Foundation (NSF) mark.

E. Service Lines

a. Clamps or Saddles

Approved service clamps or saddles shall be used when tapping ductile iron pipe and PVC pipe 16 inch size and smaller. Outlets of service saddles shall be tapped with AWWA IP thread (female). External threads of corporation valve inlet must be compatible with internal threads of the service saddle.

b. Service Line Materials

1 inch service lines shall be annealed copper tubing meeting the requirements of paragraph 510.4.E.e. High Density Polyethylene (HDPE) meeting the requirements of paragraph 501.4.E.c may be allowed for 1 inch diameter service lines with approval from NBU. 2 inch diameter service lines shall be High Density Polyethylene (HDPE) meeting the requirements of paragraph 510.4.E.c and in no case shall copper tubing be allowed.

c. HDPE Tubing

- i. HDPE pipe with 1" to 2" diameter shall be PE 4710 conforming to the latest edition of AWWA C901 and ANSI/NSF Standard 61. PE 4710 shall conform to ASTM D3350 minimum cell classification PE 445574C-CC3.
- ii. Pipe shall have a minimum pressure class of 250 psi. The outside diameter of the pipe shall be based upon the CTS sizing system.
- iii. The pipe shall be marked in accordance with the standards to which it is manufactured. Markings shall include nominal size, outside diameter base (e.g. CTS), dimension ratio (e.g. DR 9), manufacturer's name or trademark, standard materials designation code (PE 4710), cell classification (e.g. PE 445574C), PE compound oxidative resistance for potable water (CC3), pressure class (e.g. PC 250), standard's designation (AWWA C901), manufacturer's production code, date of manufacture, mark of the certifying agency for potable water (such as NSF).
- iv. Color of exterior pipe product (pipe with color code E) shall be blue for potable water.
- v. Tracer wire shall be required on all HDPE Service Lines and in accordance with Paragraph 510.4.J of this Section and Item No. 512 "Conductive Trace Wire for Non-Metallic Pipe Installation".

d. HDPE Fittings

- i. Butt Fusion Fittings – HDPE Fittings shall be made of PE4710 and with a minimum Cell Classification of PE 445574C-CC3. All HDPE fittings shall meet the requirements of AWWA C901 and shall have a pressure rating equal to the pressure rating of the pipe to which the fitting is joined.
 1. Molded fittings shall be manufactured, tested and marked per ASTM D3261.
 2. Fabricated fittings shall be manufactured, tested and marked per ASTM F2206, or individual fittings standards.
 3. Socket fittings shall meet ASTM D2683. Fittings shall be butt fusion welded, made of PE 4710 material with the same minimum cell classification used for the service line.
- ii. Electrofusion Fittings - Fittings shall be PE4710, with a minimum Cell Classification of PE 445574C-CC3. Electrofusion Fittings shall have a manufacturing standard of ASTM F1055. Fittings shall have a pressure rating equal to the pipe unless otherwise specified on the plans.
- iii. Flanges and Mechanical Joint adapters (MJ adapters) shall be PE4710, with a minimum Cell Classification of PE 445574C-CC3. Flanged and MJ adapters can

be made to ASTM D3261 or if machined, must meet the requirements of ASTM F2206. Flanges and MJ adapters shall have a pressure rating equal to the pipe unless otherwise specified on the plans. Markings for molded or machined flange adapters or MJ adapters shall be per ASTM D3261. Fabricated (including machined) flange adapters shall be per ASTM F2206.

- iv. Mechanical Fittings for service pipes - Three primary mechanical fittings or connections can be used, which are: Stab or insert type; compression type; and clamp ring. Per MAB-4, "Internal stiffeners should be used for all mechanical fittings".
- v. Mechanical fittings shall be designed to restrain and to prevent pull-out or rotation.

e. Copper Tubing

All copper service tubing shall be 1" diameter annealed seamless Type K water tube meeting ASTM B88 and rated at 150 psi working pressure. The tubing shall be homogenous throughout and free from cracks, holes, crimping, foreign inclusions or other defects. It shall be uniform in density and other physical properties.

Nominal Tube Size, inches	Outside Diameter, inches		Wall Thickness, inches	
	Average	Tolerance	Average	Tolerance
1	1.125	± 0.0035	0.065	± 0.0045

f. Service Connection Fittings

All fittings used in customer service connection - tapping mains, connecting meters, etc. must be currently listed on the Standard Products List, or called for in the New Braunfels Utilities Standard Details.

g. Brass Fittings

- i. All brass valves, couplings, bends, connections, nipples and miscellaneous brass pipe fittings and accessories used in meter connections, service lines, air release piping assemblies, and wherever needed in the water distribution system, shall conform to the detail Standards, Standard Products Lists, and AWWA C800, except as herein modified or supplemented.
- ii. Unless otherwise noted, the goods described herein shall be fabricated of Waterworks No-Lead Brass meeting the requirements of ASTM B584, UNS Copper Alloy C89833 or C89836, having not more than one fifth of one percent (0.2%) total lead content by weight.
- iii. Exposed threads shall be covered with plastic caps or sheeting to protect the threads.
- iv. Brass goods of each type and class shall be compatible with other fittings in common usage for similar purposes.
- v. Brass pipe shall conform to the weights and dimensions for Extra Strong pipe given in Table A.2 of AWWA C800.

h. Corporation Valves

- i. Inlet threads of corporation valves shall be AWWA iron pipe (IP) thread (male). AWWA IP threads shall conform to ANSI/ASME B1.20.1 as required by AWWA C800 for "General Purpose (Inch) Pipe Threads". For 1" size only, corporation valve inlet threads, and the internal threads of saddles may be the AWWA taper thread conforming to AWWA C800 Figure 1 and Table 6. External threads of corporation valve inlet must be compatible with internal threads of the service saddle.
- ii. Connections of all new copper tubing, and of tubing repairs wherever possible, shall be by flared fittings. Flare connections - and compression connections when permitted - shall be designed to provide a seal and to retain the tubing, without slippage, at a working water pressure of 150 psig.
- iii. Connections of all new polyethylene tubing or pipe shall be by compression fittings. PE tubing or piping must have a stainless steel insert stiffener at the compression connections per manufacturer's recommendations.
- iv. Flanges shall conform to ANSI B16.1, Class 125, as to dimensions, drillings, etc. Copper tubing, when used, shall be Type K tubing having dimensions and weights given in Table A.1 of AWWA C800.
- v. All fittings shall be suitable for use at hydrostatic working pressures up to 150 psig (hydrostatic testing of installed systems is at 200 psig).

F. Certification

For pipes 16-inches and larger all pipe manufacturers and suppliers shall be certified by the American National Standards Institute (ANSI) for ISO 9000 compliance. It is the intent of this certification that all appropriate tests be documented with sampling criteria, frequency of testing, date of testing and date in which every piece was manufactured. A copy of the testing data to include results shall be sent with the shipment with appropriate identification as it relates to the specific shipment.

The quality of materials, the process of manufacture and the finished pipe shall be subject to inspection and approval by the E/A at the pipe manufacturing plant and at the project site prior to and during installation. Plant inspections shall be conducted at the discretion of the City Representative and shall require only 48 hours of advance notice to the manufacturer. Only manufacturers and suppliers meeting this certification will be considered as approved providers of products as listed in the Standard Products List (SPL).

G. Polyvinyl Chloride (PVC) Pipe (Non-pressure) and Fittings for Gravity Wastewater Mains

a. General

Where PVC gravity wastewater pipe is indicated, it shall conform to ASTM D3034 for pipe sizes 4 inch to 15 inch or ASTM F679 for pipe sizes 18 inch to 48 inch. Cell Class shall be as required by applicable ASTM pipe specification; pipe stiffness shall be 115 psi minimum.

Where pressure rated PVC gravity wastewater pipe is indicated, it shall conform to ASTM D2241 SDR 26 or meet the requirements of paragraph 510.4.D.

b. Joint Material

PVC pipe and fitting shall have elastomeric gasket joints conforming to ASTM D 3212; gaskets to ASTM F 477.

c. Pipe Markings

Permanent marking on the pipe shall include the manufacturer's name and/or trademark, nominal pipe size, PVC cell classification per ASTM D1784, and be marked at intervals of not more than 5 feet:

d. Fitting Markings

Fittings shall include the manufacturer's name or trademark, nominal size, material designation "PVC", PSM, and the designation, "Specification D3034".

e. Pipe Color

Pipe shall be integrally colored green by the manufacturer.

H. Fiberglass Reinforced Plastic (FRP) Pipe (Non-pressure) and Fittings for Gravity Wastewater Mains

a. General

FRP shall conform to Item No. 320 "Fiberglass Gravity Sewer Pipe".

I. Tracer Wire

Tracer wire shall be installed on all non-ferrous water mains, water services and force mains. The wire shall be installed in such a manner as to be able to properly trace all mains without loss or deterioration of signal or without the transmittal signal migrating off the tracer wire. Tracer wire shall be placed as per specifications in 512, "Conductive Trace Wire for Non-Metallic Pipe Installation".

J. Tracer Tape

Tracer tape shall be installed on all force mains in accordance with TCEQ §217.66 rules. The tape should be a minimum of 12 inches below subgrade, or a minimum of 18 inches below finished grade on areas outside the limits of pavement. The tape shall be encased in a protective, inert, plastic jacket and color-coded in accordance with APWA Uniform Color Code.

K. Concrete

Concrete shall conform to TxDOT Item No. 421, "Hydraulic Cement Concrete".

L. Material Approval

The Contractor shall submit descriptive information and evidence that the materials and equipment the Contractor proposes for incorporation into the Work is of the kind and quality that satisfies the specified functions and quality. **New Braunfels Utilities Standard Products Lists (SPL)** forms a part of the Specifications. Contractors may, when appropriate, elect to use products from the SPL; however, submittal to the E/A is still required. Should the Contractor elect to use any materials from these lists, each product shall be completely and clearly identified by its corresponding SPL number when making

the product submittal. This will expedite the review process in which the E/A, decides whether the products meet the Contract requirements and the specific use foreseen by the E/A in the design of this engineered Project. The purpose of the SPL's is to expedite review, by the E/A of Contractor product submittals. The SPL's should not be interpreted as being a pre-approved list of products necessarily meeting the requirements for a given construction Project. Items contained in the SPL cannot be substituted for items shown on the Drawings, or called for in the specifications, or specified in the Bidding Requirements, Contract Forms and Conditions of Contract, unless approved by the E/A. The Standard Product List current at the time of plan approval will govern.

510.5 Construction Methods

A. Water Line/New Wastewater Line Separation

Installation of new water or wastewater lines shall conform to the following:

1. Where feasible, water and wastewater lines shall be no closer to each other than 9 feet between outside diameters in all directions and shall be in separate trenches.
2. If the 9 foot separation cannot be achieved, any portion of a new gravity wastewater line within 9 feet in any direction (between OD's) of a potable water line, shall be in a separate trench and constructed of AWWA C900 (DR-18) 150 psi rated PVC or ASTM D 2241 (SDR-26) 160 PSI rated PVC.
3. If the lines are parallel, they shall not be closer than 4 feet horizontally or 2 feet vertically between OD's with the wastewater lower than the water line. If the lines cross, they may be no closer than 6 inches vertically between OD's with the sewer below the water line and one standard 20 foot length of AWWA C900 (DR-18) 150 psi rated PVC or ASTM D 2241 (SDR-26) 160 PSI rated PVC shall be centered at the point of crossing the water line.
4. Unless wastewater manholes and the connection to the sewer can be made completely watertight and tested for no leakage, they must be installed so as to provide a minimum of 9 feet of horizontal clearance from an existing or proposed water line.

B. Utility and Storm Sewer Crossings

1. When the Contractor installs a pipe that crosses under a utility structure or storm sewer and the top of the pipe is within 24 inches of the bottom of the utility structure, the pipe shall be encased in concrete as specified in Item No. 505, "Concrete Encasement and Encasement Pipe", for a distance of at least 1 foot on either side of the ditch line of the utility structure or the storm sewer. Unless otherwise specified by the E/A, concrete encasement will not be required for ductile iron or AWWA C900 (DR-18) 150 psi rated PVC in sizes to 12 inch. When the Contractor installs a pipe that crosses over a utility structure or storm sewer and the top of the utility structure or storm sewer is within 18 inches of the bottom of the pipe, the pipe shall be either ductile iron, AWWA C900 (DR-18) 150 psi rated PVC in sizes to 12 inch, unless otherwise specified by the E/A.
2. Steel casing must be used when water mains cross under box culverts, large storm drain pipes (48 inches or greater in diameter), or multiple barrel storm drains of any size. Casing sizes shall be in accordance with NBU Construction Specifications. Casing must extend 5' beyond the OD of the storm drain crossing.

3. Where trenches wider than 12 inches cross under existing wastewater lines, the sewer lines shall be replaced with one 20-foot joint of AWWA C900 (DR-18) 150 psi rated PVC or ASTM D 2241 (SDR-26) 160 PSI rated PVC centered over the trench.

C. Laying Pipe

1. All recommendations of the manufacturer shall be carefully observed during handling and installation of each material. Unless otherwise indicated, all materials shall be delivered to the project by the manufacturer or agent and unloaded as directed by the Contractor. Each piece shall be placed facing the proper direction near to where it will be installed.
2. The interior of all pipe, fittings and other accessories shall be kept free from dirt and foreign matter at all times and stored in a manner that will protect them from damage. Stockpiled materials shall be stacked so as to minimize entrance of foreign matter.
3. The interior of all pipeline components shall be clean, dry and unobstructed when installed.
4. Piping materials shall not be skidded or rolled against other pipe, etc. and under no circumstances shall pipe, fittings or other accessories be dropped or jolted.
5. During handling and placement, materials shall be carefully observed and inspected and any damaged, defective or unsound materials shall be marked, rejected and removed from the job site. Minor damage shall be marked and repaired in a manner satisfactory to the E/A. Joints, which have been placed, but not joined, backfilled, etc., shall be protected in a manner satisfactory to the E/A.

D. Assembling of Pipe

1. Angular spacing of all joints shall meet the manufacturer's recommendations for the pipe and accessories being used. Side outlets shall be rotated so that the operating stems of valves shall be vertical when the valves are installed. Pressure pipe shall be laid with bell ends facing the direction of pipe installation. Pipe end bells shall be placed upgrade for all wastewater lines.
2. Orientation marks, when applicable, shall be in their proper position before pipe is seated.
3. Before joining any pipe, all foreign matter, lumps, blisters, excess coal tar coating, oil or grease shall be removed from the ends of each pipe and the pipe ends shall then be wire brushed and wiped clean and dry. Pipe ends shall be kept clean until joints are made.
4. Every precaution shall be taken to prevent foreign material from entering the pipe during installation. No debris, tools, clothing or other materials shall be placed in the pipe.

E. Joints

1. O-Ring and Push-on Joints
 - i. Just before making a joint the ends of the pipe shall be clean, dry, free of any foreign matter, lump blisters, excessive coal tar coating and grease or oil and shall

be wire brushed. The gasket and the inside surface of the bell shall be lubricated with a light film of soft vegetable soap compound (Flax Soap) to facilitate telescoping the joints. The rubber gasket if not factory installed shall be stretched uniformly as it is placed in the spigot groove to insure a uniform volume of rubber around the circumference of the groove. The spigot shall be centered in the bell, the pipe pushed home uniformly and brought into true alignment. Bedding material shall be placed and tamped against pipe to secure the joint. Care should be taken to prevent dirt or foreign matter from entering the joint space.

2. Bolted Joints

All flanged, mechanical or other bolted joints shall be joined with nuts and bolts and be coated as indicated above in Iron Pipe.

F. HDPE Service Line Joints

1. The pipe and fittings shall be joined by butt fusion or electrofusion couplings, mechanical joint (MJ) adapters, or by flange connections in accordance with manufacturer's recommendations and as required in this document. Unless otherwise shown on Drawings and except for connections to existing utilities, all joints shall be fused.

a. Butt Fusion: The pipe shall be joined by heat fusion of the ends. Prior to fusion the pipe shall be clean and the ends shall be cut square. Butt-fusion joining is applicable to pipes that have the same nominal outside diameter and wall thickness, within one SDR. Field site butt-fusion system operators shall be trained in the use of the high-quality butt-fusion equipment that secure and precisely align the pipe ends for the fusion process. Operators shall be trained by the pipe supplier or manufacturer of the fusing machine and be experienced in the operation of the equipment. Fusion quality shall be recorded, the recording of the information must be provided to the Owner. The Owner will review documents within 7 days and identify any fusion records that might indicate the need to replace an existing fused connection. The recorded fusion information must meet the standard requirements of ASTM F3124. All fusions failing to meet these requirements shall be removed and refused. Refer to ASTM F2620, ASTM F3124, ASTM F3183 and ASTM F3190.

b. Electrofusion: Electrofusion joining shall be done in accordance with the manufacturers recommended procedure and ASTM F1055, ASTM F1290, MAB-01 and MAB-02. Qualification of the fusion technician shall be demonstrated by evidence of electrofusion training within the past year on the equipment and pipe sizes to be utilized for this project. Installers shall follow the guidance shown in the previous documents to fabricate EF assemblies. The installer must remove oxidation from the pipe and maintain a clean surface on both pipe and fitting to ensure acceptable joint quality.

c. Mechanical:

i. Mechanical connection of HDPE to auxiliary equipment such as valves, pumps, and fittings shall use flanges or mechanical joint adapters and other devices in conformance with the AWWA Manual of Practice M55, Chapter 6. Mechanical connections shall be manufactured for HDPE pipe and approved by the connection manufacturer for use with polyethylene pipe. Uncontrolled tapering or hand-beveling in the field is not allowed.

- ii. Mechanical connections on pipe 3" and smaller are available to connect HDPE pipe to other HDPE pipe, or a fittings, or to a transition to another material. The use of stab fit style couplings is allowed, along with the use of metallic couplings of brass and other materials. All mechanical and compression fittings shall be recommended by the manufacturer for use with HDPE and with potable water.
- iii. Mechanical couplings that wrap around the pipe and act as saddles are made by several manufacturers specifically for HDPE pipe. All such saddles, tapping saddles, couplings and clamps shall be recommended by the manufacturer as being designed for use with HDPE pipe at the required pressure class; all mechanical couplings shall be fully restrained either by themselves or by an alternate means.
- d. Mechanical Joint/Flange: A flange assembly consists of a metal back-up flange or bolt-ring and a polyethylene flange adapter. MJ assembly consists of a MJ adaptor with gland ring, gasket and bolt kit. Both MJ adapters and flange adapters are fused onto the plain end of the pipe main. Bolting guidance for MJ connections is provided in AWWA C600 and guidance for flanges and gaskets is provided in PPI-TN38. Note that an HDPE flange adapter acts as both a flange and a gasket, and as such, no 'gasket' is required. For further information, refer to PPI TN38

G. Placing Pipe in Tunnels

Piping installed as a carrier pipe in a tunnel, encasement pipe, etc., shall have uniform alignment, grade, bearing, meet all requirements of the carrier pipe as specified, and conform to the reviewed Shop Drawings. All necessary casing spacers, joint restraints, bedding material, grout cradle or paving, bracing, blocking, etc., as stipulated by the Contract or as may be required to provide and maintain the required pipe alignment and grade, shall be provided by the Contractor at no cost except as provided by the Bid Items. This shall include casing spacers acceptable to the Owner attached to the carrier pipe in accordance with the manufacturer's recommendations. The insertion pushing forces shall not exceed the pipe manufacturer's recommendation. Carrier pipe may be pulled into place inside the encasement or tunnel using lubricants to ease pipe installation. Lubricants such as flax soap or drilling mud may be used for this purpose. Use of petroleum products such as oil or grease for this purpose shall not be permitted.

H. Temporary Pipe Plugs, Caps, Bulkheads and Trench Caps

1. Temporary plugs, caps or plywood bulkheads shall be installed to close all openings of the pipe and fittings when pipeline construction is not in progress.
2. All temporary end plugs or caps shall be secured to the pipe as provided under Item No. 507, "Bulkheads".
3. Trench caps shall be reinforced Class D concrete as indicated.

I. Corrosion Control

1. Protective Covering

Unless otherwise indicated, all flanges, nuts, bolts, threaded outlets and all other iron or steel components buried and in contact with earth or backfill shall be wrapped with 8-mil (minimum) polyethylene film meeting ANSI/AWWA C105 to provide a continuous wrap.

J. Pipe Anchorage, Support and Protection

Pressure pipeline tees, plugs, caps and shall be secured with thrust restraints. Joint restraints lengths shall be determined by the Engineer. Concrete thrust blocking may be approved on a case-by-case basis for connections to existing mains or other situations where restraint lengths cannot be achieved.

1. Concrete Thrust Blocking

- a. Concrete for use as reaction or thrust blocking shall be Class B conforming to TxDOT Item No. 421, "Hydraulic Cement Concrete".
- b. Concrete blocking shall be placed between solid ground and the fitting to be anchored. The area of bearing on the pipe and on the ground shall be as indicated or directed by the E/A. The blocking shall, unless otherwise indicated, be so placed that the pipe, fittings and joints will be accessible for repair.
- c. The trench shall be excavated at least 6 inches outside the outermost projections of the pipe or appurtenance and the trench walls shaped or undercut according to the detail Drawings or as required to provide adequate space and bearing area for the concrete.
- d. The pipe and fittings shall be adequately weighted and laterally braced to prevent floating, shifting or straining of the pipeline while the concrete is being placed and taking initial set. The Contractor shall be solely responsible for the sufficiency of such restraints.

2. Metal Thrust Restraint

Fabricated thrust restraint systems such as those described below may be approved for use instead of concrete blocking. To obtain approval, the project Drawings must include sufficient drawings, notes, schedules, etc., to assure that the proposed restraints as installed will be adequate to prevent undesirable movement of the piping components. Such restraint systems may only be used where and as specifically detailed and scheduled on approved Project Drawings.

3. Thrust Harness

A metal thrust harness of tie rods, pipe clamps or lugs, turnbuckles, etc., may be approved. All carbon steel components of such systems, including nuts and washers, shall be hot-dip galvanized; all other members shall be cast ductile iron. After installation, the entire assembly shall be wrapped with 8-mil polyethylene film, overlapped and taped in place with duct tape to form a continuous protective wrap.

4. Restrained Joints

Piping or fitting systems utilizing integral mechanically restrained joints may be approved. All components of such systems shall be standard manufactured products fabricated from cast ductile iron, hot-dip galvanized steel, brass or other corrosion resistant materials and the entire assembly shall be protected with a continuous film wrap as described for (a) above.

Location, configuration and description of such products shall be specifically detailed on the Drawings. (Add-on attachments such as retainer glands, all-thread rods, etc., are not acceptable.)

K. Wastewater Connections

1. Connections to Mains 12 Inches and Smaller
 - a. All branch connections of new main lines shall be made by use of manholes.
 - b. Service stubs shall be installed as indicated. Minimum grade shall be 2 percent downward to main and minimum cover shall be 4 1/2 feet at the curb. Standard plugs shall be installed in the dead end before backfilling.
 - c. Where a service connection to a main 12 inches or smaller is indicated, a wye, tee or double wye shall be installed.
 - d. Where a service connection to a main 15 inches or larger is indicated, a field tap may be made with the pipes installed crown to crown. The tap should be made conforming to the pipe manufacturer's recommendations with the E/A's approval.
 - e. Where not otherwise indicated, (wastewater) service connections shall be installed so that the outlet is at an angle of not more than 45 degrees above horizontal at the main line.
2. Connections to the Existing System
 - a. Unless otherwise specified by the E/A, all connections made to existing mains shall be made at manholes with the crown of the inlet pipe installed at the same elevation as the crown of the existing pipe. Service stubs installed on the existing system shall be installed by use of tapping saddles unless otherwise approved by the E/A. Extreme care shall be exercised to prevent material from depositing in the existing pipe as the taps are being made.
 - b. When connections to existing mains are made, a temporary plug approved by the E/A must be installed downstream in the manhole to prevent water and debris from entering the existing system before Final Completion. These plugs shall be removed after the castings are adjusted to finish grade or prior to Final Completion.

L. Water System Connections

1. The Contractor shall, at his expense, make all necessary connections of new piping or accessories to the existing water system. To minimize any inconvenience from outages, the Contractor shall schedule all such connections in advance and such schedule must be approved by the E/A before beginning any Work.
2. Line Stoppers
NBU will require contractors to use line stoppers to take an outage during construction if system valves are not available or existing valves do not function. Line stoppers will be required based on the following criteria.
 - a. If the number of residential customers affected is greater than 20 and expected to last more than 4 hours.
 - b. If any commercial customers are affected by the outage then the use of line stoppers will be determined on a case by case basis.

- c. If any critical care customers are affected by the outage then the use of line stoppers will be determined on a case by case basis.
- d. System conditions may require a line stopper and may not be known until construction commences.

3. Shutoffs

- a. New Braunfels Utilities will make all shutoffs on existing water mains. The Contractor shall be required to notify the E/A's field representative on the job at least 72 hours prior to the desired time for any shutoff. The E/A's field representative will notify any affected utility customers at least 24 hours prior to the shutoff. The Utility will make the shutoff after ensuring that all appropriate measures have been taken to protect the water system, customers and employees.
- b. New Braunfels Utilities will operate all valves to fill existing mains. Where a newly constructed main has not been placed in service and has only one connection to the public water supply, the Contractor may operate one valve to fill the main after approval has been obtained from the Utility. The operation of the valve is to be conducted under the immediate supervision of the E/A's field representative.
- c. Water for the Work shall be metered and furnished by the Contractor in accordance with of the Standard Contract Documents.

4. Wet Connections to Existing Water System

- a. The Contractor shall make all wet connections called for by the Contract or required to complete the Work. Two connections to an existing line performed during the same shutout, at the same time and at a distance less than 50 linear feet apart, will be considered one wet connection. Two connections to an existing line performed during the same shutout, at the same time and at a distance equal to, or greater than 50 linear feet will be considered two wet connections. A wet connection shall include draining and cutting into existing piping and connecting a new pipeline or other extension into the existing pressure piping, forming an addition to the water transmission and distribution network.
- b. The Contract price for wet connections shall be full payment for all necessary shutoffs, excavation, removing plugs and fittings, pumping water to drain the lines, cutting in new fittings, blocking and anchoring piping, bedding and backfilling, placing the lines and service and all site cleanup.
- c. No water containing detectable amounts of chlorine may be drained, released, or discharged until specific planning and appropriate preparations to handle, dilute and dispose of such chlorinated water are approved in advance by the Utility and the disposal operations will be witnessed by an authorized representative from the Utility.

5. Pressure Taps to Existing Water System **(Note: Pressure taps can only be performed by NBU pre-approved Contractors.)**

- a. The Contractor shall make all pressure taps called for by the Contract Documents or required to complete the Work. A pressure tap shall consist of connecting new piping to the existing water system by drilling into the existing pipe while it is carrying water under normal pressure without taking the existing piping out of service.

- b. Unless otherwise provided by the Contract, the Contractor shall, at his expense, perform all necessary excavation, furnish and install the tapping sleeve, valve and accessories, provide the tapping machine, drill the tap and shall block, anchor and backfill the piping, valve and all accessories, place the new piping in service and perform all site cleanup. When NBU makes the tap, NBU crews will tap the main and install the service to the property line. In this case, the Contractor must pay for the tap in advance at NBU's Service Center located at 355 FM 306.
- c. If a private Contractor makes the tap, a Utility Inspector must be present. "Size on size" taps will not be permitted, unless made by use of an approved full circle gasket tapping sleeve. Concrete blocking shall be placed behind and under all tap sleeves 24 hours prior to making the wet tap.

6. Service Connections

- a. Service connection taps into PVC, AC, CI, or DI pipe 16 inches or smaller shall be made using either a service clamp or saddle or a tapping sleeve as recommended by the pipe manufacturer and as approved by the E/A. Direct tapping of these pipes will not be permitted.
- b. All water service connections shall be installed so that the outlet is at an angle of not more than 45 degrees above horizontal at the main line.
- c. Precautions should be taken to ensure that the tapping saddle or sleeve is placed on the pipe straight to prevent any binding or deformation of the PVC pipe. The mounting chain or U-bolt strap must be tight.
- d. Tapping shall be performed with a sharp shell type cutter so designed that it will smoothly penetrate heavy walled PVC DR14 and 200 psi AC and will retain and extract the coupon from the pipe.

7. Cleanup and Restoration

- a. It shall be the Contractor's responsibility to keep the construction site neat, clean and orderly at all times. Cleanup shall be vigorous and continuous to minimize traffic hazards or obstructions along the streets and to driveways. Trenching, backfill, pavement repair (as necessary), and cleanup shall be coordinated as directed by the Utility. The E/A will regulate the amount of open ditch and may halt additional trenching if cleanup is not adequate to allow for orderly traffic flow and access.
- b. Materials at the site shall be stored in a neat and orderly manner so as not to obstruct pedestrian or vehicular traffic. All damaged material shall be removed from the construction site immediately and disposed of in a proper manner. All surplus excavated materials become the property of the Contractor for disposal at his expense. After trenching, the Contractor shall immediately remove all excavated materials unsuitable for or in excess of, backfill requirements. Immediately following the pipe laying Work as it progresses, the Contractor shall backfill, grade and compact all excavations as provided elsewhere and shall immediately clean up and remove all unused soil, waste and debris and restore all surfaces and improvements to a condition equal or superior to that before construction began and to an appearance which complements the surroundings. The Contractor shall grade and dress the top 6 inches of earth surfaces with soil or other material similar and equal

to the surrounding, fill and smooth any visible tracks or ruts, replace and re-establish all damaged or disturbed turf or other vegetation and otherwise make every effort to encourage the return of the entire surface and all improvements to a pleasant appearance and useful condition appropriate and complementary to the surroundings and equal or similar to that before construction began.

M. Water Main Abandonment

1. Water mains to be abandoned shall be disconnected from pipes that are to remain in service and entirely filled with pumpable grout. All connections to existing mains to remain in service shall be cut or plugged as appropriate and thrust blocks installed as necessary. All valves on the water main shall be abandoned as per the section below. Contractor is responsible for all labor, equipment, and materials required to complete the work.
2. Service lines to be abandoned shall be disconnected at the corporation stop at the main, and all other valves and appurtenances, including the water meter, shall be removed. All meters to be removed shall be returned to NBU.

N. Valve Abandonment

1. Valves to be abandoned shall only occur when an abandoned valve is left on an abandoned water main that is no longer in service. A valve to be abandoned shall have the valve box, casing, and valve stem extension (if present) removed to a minimum of 18-inches below grade. The remaining casing shall be filled with non-shrink grout to the top of the casing.

O. Wastewater Main Abandonment

1. Wastewater mains to be abandoned shall be cleaned and televised per Item No. 315 "CCTV Inspection" to verify all existing laterals have been transferred to another wastewater main.
2. Wastewater mains to be abandoned shall be disconnected from pipes or manholes that are to remain in service and entirely filled with pumpable grout. All connections to existing mains to remain in service shall be cut or plugged as appropriate. Contractor is responsible for all labor, equipment, and materials required to complete the work.
3. Wastewater manholes to be abandoned shall be abandoned per NBU Standard No. 340 "Abandoned Manhole."

510.6 Measurement

Pipe will be measured by the linear foot for the various types, sizes and classes. Parallel lines will be measured individually.

Pipe to be abandoned shall be measured by the cubic yard of pumpable grout required to completely fill the pipe.

Where a line ties into an existing system, the length of the new line will be measured from the visible end of the existing system at the completed joint. Unless otherwise indicated, the length of water and wastewater lines will be measured along pipe horizontal centerline stationing through fittings, valves, manholes, and other appurtenances.

Unless otherwise provided, ductile iron fittings 24-inch and smaller will be measured by the ton and paid for in accordance with the schedule in Standard Product List. Unless otherwise provided, fittings larger than 24-inch sizes will be subsidiary to the pipe. These will be subsidiary to the bid item Pipe.

Excavation and backfill, when included under pipe installation will not be measured as such but shall be included in the unit price bid for constructing pipe and measured as pipe complete in place including excavation and backfill.

When pay items are provided for the other components of the system, measurement will be made as addressed hereunder.

510.7 Payment

Payment for pipe, measured as prescribed above, will be made at the unit price bid per linear foot for the various sizes of pipe, of the materials and type indicated, unless unstable material is encountered or trench excavation and backfill is bid as a separate item.

A. Pipe

Payment for pipe, measured as prescribed above, will be made at the unit price bid per linear foot complete-in-place as designed and represented in the Drawings and other Contract documents. Unless otherwise provided herein, as separate pay item(s), subsidiary items to the bid price per linear foot of pipe shall include:

1. Clearing
2. Constructing any necessary embankment
3. Excavation
4. Disposal of surplus or unusable excavated material
5. Furnishing, hauling and placing pipe
6. Fittings larger than 24 inch
7. Field constructed joints, collars, temporary plugs, caps or bulkheads
8. All necessary lugs, rods or braces
9. Pipe coatings and protection
10. Connections to existing systems or structures, concrete blocking and thrust blocks and restrained joints
11. Preparing, shaping, pumping for dewatering, and shoring of trenches
12. Bedding materials
13. Backfill materials
14. Hauling, placing and preparing bedding materials
15. Particle migration measures
16. Hauling, moving, placing and compacting backfill materials
17. Temporary and permanent pavement repairs and maintenance

18. Temporary and permanent removal and replacement of pavement, curb, drainage structures, driveways, sidewalks and any other improvements damaged or removed during construction
19. Cleanup
20. Vertical stack on deep wastewater services
21. All other incidentals necessary to complete the pipe installation as indicated

B. No separate payment will be made for thrust restraint measures.

C. Wet Connections to Water Mains

When called for in the bid, wet connections will be paid at the unit price bid per each, complete in place, according to the size of the main that is in service and shall be full compensation for all Work required to make the connection and place the pipe in service.

D. Fittings

Cast iron and ductile iron fittings of the class indicated, furnished in accordance with these specifications will be paid for at the unit price bid per ton, complete in place, according to scheduled weights for mechanical joint fittings furnished, including glands, bolts and gaskets, as published in the following standards:

1. AWWA C153 for all fittings 4-inch through-24 inch sizes, regardless of whether AWWA C110 or AWWA C153 fittings are furnished or the type of end connections supplied.
2. AWWA C110 for all fittings larger than 24-inch size.

E. Pressure Taps

Pressure taps will be paid for at the unit price bid, complete in place, according to the size tap made and the size main tapped and shall be full payment for furnishing all necessary materials, including tapping sleeve and valve, making the tap, testing and placing the connection in service.

F. Trench Safety Systems

When called for in Bid, Trench Safety Systems shall conform to Item No. 121, "Trench Safety Systems".

G. Water Main Abandonment

Water main abandonment shall be paid for at the unit price bid, complete in place, according to the size of the main to be abandoned, and shall be full payment for furnishing all labor, equipment, and materials necessary to fill the existing main with pumpable grout. Unless otherwise provided herein, as separate pay item(s), subsidiary items to the bid price shall include:

1. All excavation required to access the existing main
2. Installation of plugs or caps
3. Installation of thrust blocks
4. Backfill, compaction, and restoration
5. Temporary and permanent pavement repairs and maintenance
6. Disposal of surplus or unusable excavated material

7. Removal and legal disposal of existing water main
8. Temporary and permanent removal and replacement of pavement, curb, drainage structures, driveways, sidewalks and any other improvements damaged or removed during construction
9. Cleanup

H. Water Service Abandonment

Water service abandonment shall be paid for at the unit price bid, complete in place, according to the size of the service to be abandoned, and shall be full payment for furnishing all labor, equipment, and materials necessary to plug or cap the connection to the existing main and remove all existing valves and appurtenances. Unless otherwise provided herein, as separate pay item(s), subsidiary items to the bid price shall include:

1. All excavation required to access the existing main
2. Installation of plugs or caps
3. Backfill, compaction, and restoration
4. Temporary and permanent pavement repairs and maintenance
5. Disposal of surplus or unusable excavated material
6. Removal and legal disposal of existing service materials
7. Delivery of water meters to NBU storage facilities or inspection personnel, as directed
8. Temporary and permanent removal and replacement of pavement, curb, drainage structures, driveways, sidewalks and any other improvements damaged or removed during construction

I. Wastewater Line Abandonment

Wastewater line abandonment shall be paid for at the unit price bid, complete in place, according to the size of the main to be abandoned, and shall be full payment for furnishing all labor, equipment, and materials necessary fill the existing line with pumpable grout. Unless otherwise provided herein, as separate pay item(s), subsidiary items to the bid price shall include:

1. Cleaning and televising the existing main
2. All excavation required to access the existing main
3. Installation of plugs or caps
4. Installation of thrust blocks
5. Backfill, compaction, and restoration any required excavation
6. Temporary and permanent pavement repairs and maintenance
7. Removal and legal disposal of surplus or unusable excavated material
8. Removal and legal disposal of existing sewer materials
9. Temporary and permanent removal and replacement of pavement, curb, drainage structures, driveways, sidewalks and any other improvements damaged or removed during construction
10. Cleanup

Payment, when included as a Contract pay item, will be made under one of the following:

Pay Item: Pipe, ____ Dia. ____ (all depths), including Excavation and Backfill	Per Linear Foot
Pay Item: Pressure Taps, ____ Dia. x ____ Dia.	Per Each
Pay Item: Wet Connections, ____ Dia. x ____ Dia.	Per Each
Pay Item: Ductile Iron Fittings 4 inch through 24 inch	Per Ton
Pay Item: Abandon and Grout Fill, ____ Dia. Water Main	Per CY
Pay Item: Abandon and Grout Fill, ____ Dia. Wastewater Main	Per CY

End

Item No. 511
Water Valves & Fire Hydrants

511.1 Description

This item shall govern the valves furnished and installed as indicated on the Drawings. Unless otherwise indicated on the Drawings, all valves 4 inches and larger shall be AWWA-type valves of suitable design and fully equipped for service buried in the earth, without need for further modification and shall be wrapped with 8-mil polyethylene film with all edges and laps securely taped to provide a continuous wrap. Where not indicated, the Contractor may use valves with any type end-joint allowed for fittings of the pipe class being used. Unless otherwise indicated on the Drawings, all valve stems shall be adjusted to situate the operating nut not more than 24 inches below the proposed ground or paving surface of the finished project.

This item shall govern the furnishing of labor, materials, equipment and incidentals necessary to install fire hydrant and appurtenances, operators, bolts, nuts and gaskets.

511.2 Submittals

The submittal requirements of this specification item must include:

- A. Test Data.
- B. Product Catalog Data.
- C. Shop Drawings.
- D. Operation and Maintenance Manuals.
- E. Hydrant cut sheets and Certification of Compliance with AWWA C502 as record data.
- F. Hydrant and flow results from hydrant flow testing in section 511.7 for approval.

511.3 Standards

The applicable provisions of the following standards shall apply as if written here in their entirety:

- A. American National Standards Institute (ANSI) Standards:

ANSI B16.1	Cast Iron Pipe Flanges and Flanged Fittings
------------	---

- B. American Society for Testing and Materials (ASTM) Standards:

ASTM A126	Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings
ASTM A307	Carbon Steel Bolts and Studs, 60,000-psi Tensile Strength
ASTM A325	Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength
ASTM A536	Standard Specification for Ductile Iron Castings
ASTM D2000	Classification System for Rubber Products in Automotive Applications

- C. American Water Works Association (AWWA) Standards:

AWWA C105	Polyethylene Encasement for Ductile-Iron Pipe System
AWWA C111	Standard for Rubber-Gasket Joints
AWWA C500	Metal-Seated Gate Valves For Water Supply Service
AWWA C502	Standard for Dry-Barrel Fire Hydrants
AWWA C504, Class 150B	Rubber-Seated Butterfly Valves
AWWA C507	Ball Valves, 6 in. Through 60 in.
AWWA C509	Resilient Seated Gate Valves for Water and Sewerage Systems
AWWA C512	Air-Release, Air/Vacuum, and Combination Air Valves for Waterworks Service
AWWA C514	Air Valve and Vent Inflow Preventer Assemblies for Potable Water Distribution System and Storage Facilities
AWWA C515	Reduced-Wall, Resilient-Seated Gate Valves for Water Supply Service
AWWA C530	Standard Specification for Pilot-Operated Control Valves
AWWA C540	Standard for Power-Actuating Devices for Valves And Slide Gates
AWWA C550	Standard for Protective Interior Coatings for Valves and Hydrants
AWWA M51	Air Valves: Air-Release, Air/Vacuum, and Combination

D. NSF International

NSF 61	Drinking Water System Components – Health Effects
--------	---

511.4 Materials

The Contractor shall submit descriptive information and evidence that the materials and equipment the Contractor proposes for incorporation in the Work is of the kind and quality that satisfies the specified functions and quality. New Braunfels Utilities' Standard Products Lists (SPL) are considered to form a part of these Specifications. Contractors may, when appropriate, elect to use products from the SPL; however, submittal to the Engineer/Architect (E/A) is still required. If the Contractor elects to use any materials from these lists, each product shall be completely and clearly identified by its corresponding SPL number when making the product submittal. This will expedite the review process in which the E/A, decides whether the products meet the Contract requirements and the specific use foreseen by the E/A in the design of this engineered Project.

The SPL's should not be interpreted as being a pre-approved list of products necessarily meeting the requirements for a given construction Project. Items contained in the SPL cannot be substituted for items shown on the Drawings, or called for in the specifications, or specified in the Bidding Requirements, Contract Forms and Conditions of Contract, unless approved by the E/A. The Standard Product List current at the time of plan approval will govern.

A. Samples, Inspection and Testing Requirements:

All tests and inspections called for by the applicable standards shall be performed by the manufacturer. Upon request, results of these tests shall be made available to the purchaser.

B. Other Requirements:

Each submittal shall be accompanied by:

1. Complete data covering:
 - a. the operator, including type and size, model number, etc.,
 - b. the manufacturer's name and address of his nearest service facility,
 - c. the number of turns to fully open or close the valve
2. Detailed instructions for calibrating the limit stops for open and closed positions, and
3. Any other information that may be necessary to operate and maintain the operator.
4. Complete dimensional data and installation instructions for the valve assembly as it is to be installed, including the operator.
5. Complete replacement parts lists and drawings, identifying every part for both the valve and operator.

511.5 Valves

A. All valves shall be of the close right type.

B. Gate Valves

Gate Valves 4" through 36", including Tapping Valves, shall be resilient wedge type with non-rising stem in strict conformance with AWWA C509/C515 unless otherwise indicated. All valves for potable water service must comply with NSF 61 standards.

Gate Valves larger than 36", including Tapping Valves, shall be double disc, parallel seat internal wedging type valves meeting the requirements of AWWA C500.

1. Quality Assurance

- a. Acceptable Manufacturers
 - i. American Flow Control.
 - ii. M&H.
 - iii. Mueller.
 - iv. Clow.
 - v. U.S. Pipe.
 - vi. Kennedy Valve
- b. Experience Requirements: The manufacturer shall have at least 10 years of experience in the manufacture of valves used in the water and wastewater treatment environment. References and installation list shall be provided on request.

2. Functional Requirements

- a. Stem Seals: All valves shall have approved O-ring type stem seals. At least two O-rings shall be in contact with the valve stem where it penetrates the valve body.
- b. Operation: All valves shall have non-rising stems with a 2" square operating nut, or with a spoke type handwheel when so ordered, turning clockwise to close.
- c. Gearing: Gate valves in 16 inch and larger sizes shall be geared and, when necessary for proper bury depth and cover, shall be the horizontal bevel-geared type enclosed in a lubricated gear case.
- d. Bypass: Unless otherwise indicated, 36 inch and larger gate valves shall be equipped with a bypass of the non-rising stem type which meets the same AWWA standard required for the main valve.
- e. Valve Ends: Valve ends shall be push-on, flanged, mechanical joint, ALPHA restrained joint, as indicated or approved.
- f. Tapping valves shall have inlet flanges conforming to MSS SP-60, with bolt holes drilled per ANSI B16.1 Class 125. Seat rings and body casting shall be over-sized as required to accommodate full size cutters; the outlet end shall be constructed and drilled to allow the drilling machine adapter to be attached directly to the valve.
- g. Gear Case: All geared valves shall have enclosed gear cases of the extended type, attached to the valve bonnet in a manner that makes it possible to replace the stem seal without disassembly and without disturbing the gears, bearing or gear lubricant. Gear cases shall be designed and fabricated with an opening to atmosphere so that water leakage past the stem seal does not enter the gear case.
- h. Valve Body: Double disc gate valves in 36 inch and larger sizes installed in the horizontal position shall have bronze rollers, tracks, scrapers, etc.
- i. Gate: Gate for resilient wedge gate valves shall be ductile iron with rubber-seat compound bonded to the valve gate. Gate for double disc valves shall be ductile iron with bronze mounted wedges and seats.

C. Butterfly Valves:

Unless otherwise indicated, all valves shall conform AWWA C-504 and AWWA C-550 and comply with NSF61 standards, except as modified or supplemented herein.

1. Quality Assurance:

- a. Acceptable Manufacturers
 - i. DeZurik.
 - ii. M&H.
 - iii. CMB/K-Flo.
 - iv. Pratt.
- b. Experience Requirements: The Manufacturer shall have had successful experience in manufacturing tight-closing, rubber-seated butterfly valves for this type service in the sizes indicated. The Manufacturer shall have at least 10 year's experience in the manufacture of valves.
- c. Manufacturer's Representative for Startup and Testing: The Valve Vendor or Manufacturer shall provide the services of a competent manufacturer's representative for an indefinite period of time as required to insure proper adjustment, installation, and operation of the valve.

2. Functional Requirements

- a. Valve Bodies: Valves shall be the short body design and shall have flanged connections on both ends unless otherwise called for. Valve bodies shall be constructed of cast iron ASTM A126, Class B or ASTM A48, Class 40 or ductile iron in accordance with ASTM A536, Grade 65/45/12. Valve class shall be suitable for the pressure class of the adjacent pipe in which it is installed or as shown in the valve list herein.
- b. Valve Discs: Valves shall be of such design that the valve discs will not vibrate or flutter when operated in a throttled position. Valve discs shall be secured to the shafts by means of keys or pins so arranged that the valve discs can be readily removed without damage thereto. All keys and pins used in securing valve discs to shafts shall be stainless steel or monel. Valve discs shall be stainless steel or ductile iron, ASTM A536, Grade 65-45-12 (448-310-12); seating edge shall be stainless steel or other corrosion resistant material.
- c. Valve Shafts: Valve shafts shall be constructed of wrought stainless steel conforming to ASTM A276 or monel. The ends of the shaft shall be permanently marked to indicate the position of the disc on the shaft.
- d. All buried valves shall have approved manufacturer's O-ring type or split V type "Chevron" shaft seals. When O-ring seals are used, there shall be at least two O-rings in contact with the valve shaft where it penetrates the valve body.
- e. On 24 inch and larger valves, the seat shall be completely replaceable and/or adjustable with common hand tools without disassembling the valve from the pipeline. Rubber seats located on the valve disc shall be mechanically secured with stainless steel retainer rings and fasteners.
- f. Unless otherwise indicated, valves shall be provided with manual operators with vertical stems and 2 inches square operating nut turning clockwise to close and equipped with a valve disc position indicator. All keys or pins shall be stainless steel or monel. Buried valves shall have the valve stems extended or adjusted to locate the top of the operating nut no more than 24 inches below finish grade.
- g. Unless otherwise indicated, motorized butterfly valves shall be equipped with 460/230 VAC, 3-phase reversing motor operators, extended as required to locate

the center line of the operator shaft approximately 4 feet to 4 feet, 6 inches above finish grade. Operators shall be equipped with cast iron or malleable iron manual override hand wheel with a valve position indicator, local push button controls, lighted status/position indicator, torque and travel limit switches and all switches, relays and controls (except external power and signal wiring) necessary for both local and remote operation.

3. Performance Requirements

- a. Unless otherwise indicated, valve operators shall be sized to seat, unseat, open and close the valve with 150 psi shutoff pressure differential across the disk and allow a flow velocity of 16 fps past the disc in either direction.
- b. Motorized valve motors shall be capable of producing at least 140% of the torque required to operate the valves under conditions of maximum non-shock shutoff pressure without exceeding a permissible temperature rise of 131°F over 104°F ambient (55 degrees Celsius over 40 degrees Celsius ambient); they shall have a duty rating of not less than 15 minutes and shall be capable of operating the valve through 4 1/2 cycles against full unbalanced pressure without exceeding the permissible temperature rise. Motors shall be suitable for operating the valve under maximum differential pressure when voltage to motor terminals is 80% of nominal voltage. Motor bearings shall be permanently lubricated and sealed.

D. Ball Valves:

Unless otherwise indicated, Ball Valves, shall conform to AWWA C507.

Ball valves shall be brass, bronze, stainless steel or PVC as indicated on the Drawings or Details or as approved by the Engineer or designated representative.

E. Air-Vacuum Release Valves:

Unless otherwise indicated, Air-Vacuum Release Valves, Combination Air Valves, shall conform to AWWA C512 and C514. Valves in potable water applications must adhere to NSF 61 requirements.

1. Quality Assurance

- a. Acceptable Manufacturers:
 - i. Vent-O-Mat
 - ii. Vent-Tech
 - iii. A.R.I. Flow Control

2. Air-Vacuum Release Valves

- a. Shall be air-vacuum units having small and large orifice units contained and operating within a single body or assembled unit.
- b. The small orifice system shall automatically release small volumes of air while the pipe is operating under normal conditions. The large air-vacuum orifice system shall automatically exhaust large volumes of air while the pipe is being filled and shall permit immediate re-entry of air while being drained.
- c. Valve body, float, and assembly shall be designed for the pipeline's overall maximum working pressure and shall seat at the minimum pressure.

3. Combination Air Valves

- a. Shall be designed to exhaust large volumes of air as the pipeline is being filled; permit large volumes of air to enter the pipeline during pipeline drainage; release accumulated pockets of air while the pipeline is in operation and under pressure; and dampen surge pressures caused by water column separation or rapid air discharge.
- b. Combination air valves shall be heavy-duty, single-chamber air and vacuum valves with disc floats. Floats shall include discs drilled with the small and large orifices, and an anti-surge float. Internal clearances around the floats shall be equal to the inlet/outlet area. The anti-surge float should be normally opened and have drilled orifices to throttle water flow.
- c. Combination air valve inlet/outlet cross-sectional area shall be equal to the nominal size of the valve. CAV outlet for raw water use shall be fitted with a cover or with a vent pipe where indicated on the Drawings. Combination air valves outlets for treated water use shall be connected to piping to vent air out of the manhole. The vent piping shall extend to 4 feet above the ground or as indicated on the Drawings.

4. Material Requirements

- a. Interior components should be stainless steel. Interior components that are not stainless steel shall be coated in accordance with Specification Item No. 530 "High Performance Coatings."
- b. Valve exterior bodies and covers shall be 316 stainless steel.
- c. Internal bushings, hinge pins, float guide and retaining screws, pins, etc., shall be stainless steel.
- d. Orifice seats shall be Buna-N rubber.
- e. Floats shall be stainless steel, rated at 1000 psi.
- f. Unless otherwise indicated, these valves shall be as included in the Standard Products List.

F. Control Valves:

All control valves to regulate pressure, flow, pump, etc., in New Braunfels Utilities' lines shall be models listed in the Standard Products List (SPL).

511.6 Fire Hydrants

All fire hydrants shall be Dry Barrel, Traffic Model (break-away), Post Type having Compression Type Main Valves with 5 1/4" or 6" opening, closing with line pressure. Approved models are listed on Standard Products List.

New Braunfels Utilities reserves the right to limit purchases of fire hydrants to traffic models equipped with safety flange on the hydrant barrel and stem, manufactured by the following manufacturers providing such products conform to the provisions contained here in:

- A. Mueller Company (Mueller A423 Super Centurion 200)
- B. American-Darling Valve and Manufacturing Company (American-Darling 6-inch B-84-B)
- C. Clow Valve Company (Clow Medallion)

D. EJ (East Jordan Iron Works)

All fire hydrants shall be provided with (1) 5" Harrington Integral Hydrant Storz, "HIHS" or equivalent (approved by NBU engineer).

- A. Mueller – Harrington # HIHS-MLR-50-45 (or Mueller's 5" Quick Disconnect, part # 287304)
- B. American Darling – Harrington # HIHS-WAT-50-45
- C. Clow – Harrington # HIHS-Clow-50-45
- D. EJ (East Jordan Iron Works) – Harrington # HIHS-EJIW-50-45

Applicable Specifications

- A. AWWA C-502 current: "AWWA Standard for Dry-Barrel Fire Hydrants".
- B. NFPA 1963: "Standard for Fire Hose Connections".
- C. ANSI A-21.11 current: "American National Standard for Rubber Gasket Joints for Cast Iron and Ductile Iron Pressure Pipe and Fittings".

Functional Requirements

- A. Design Working Pressure shall be 250 psi or greater.
- B. Inlet shall be side connection hub end for mechanical joint (ANSI A-21.11-current). Shoe shall be rigidly designed to prevent breakage.
- C. Lower Barrel shall be rigid to assure above ground break at traffic feature. Bury length of hydrant shall be four (4) feet minimum, five (5) feet maximum (hydrant lead pipe may be elbowed up from main using restrained joints; flanged joints in lead pipes are not allowed). Flange type connections between hydrant shoe, barrel sections and bonnet shall have minimum of 6 corrosion resistant bolts. Barrel shall have an inside diameter of not less than 7 inches. Hydrant shall have non-rising stem.
- D. Hydrant Main Valve shall be 5 1/4 or 6-inch I.D. Valve stem design shall meet requirements of AWWA C502, with Operating Nut turning clockwise to close. Operating Nut shall be pentagonal, 1 1/2-inch point to flat at base, and 1 7/16 inches at top and 1-inch minimum height. Seat ring shall be bronze (bronze to bronze threading) and shall be removable with light weight stem wrench. Valve mechanisms shall be flushed with each operation of valve; there shall be a minimum of two (2) drain ports.
- E. Traffic Feature shall have replaceable breakaway ferrous metal stem coupling held to stem by readily removable type 302 or 304 stainless steel fastenings. Breakaway flange or frangible lugs shall be designed to assure aboveground break. Breakaway or frangible bolts will not be acceptable.
- F. Outlet Nozzles shall be located approximately 18 inches above ground. Each hydrant shall have two (2) 2 1/2 inch nozzles 180 degrees apart with National (American) Standard Fire Hose Coupling Screw Thread NFPA 1963 and one (1) 5-inch Harrington Integral Hydrant Storz Nozzle, Harrington, Inc. model "HIHS" or equivalent (approved by NBU engineer). Nozzles shall be threaded or cam-locked, O-ring sealed, and shall have type 302 or 304 stainless steel locking devices. Nozzle caps (without chains) and cap gaskets shall be

furnished on the hydrant. The cap nut shall have the same configuration as the operating nut, with exception to the Storz Cap, which shall not have a pentagon-operating nut and shall be attached by cable to the hydrant.

- G. Hydrants shall be Dry-Top Construction, factory lubricated oil or grease with the lubricant plug readily accessible.
- H. Hydrant shall have double O-ring seals in a bronze stem sheath housing to assure separation of lubricant from water and shall have a weather cap or seal, or both, as approved by the Owner, to provide complete weather protection.

Material Requirements

- A. All below ground bolts shall be corrosion resistant. The hydrant valve shall be Neoprene, 90 durometer minimum. The seat ring, drain ring, operating nut and nozzles shall be bronze, AWWA C-502 current, containing not over 16 percent zinc. Break-away stem coupling shall be of ferrous material; its retaining pins, bolts, nuts, etc. of type 302 or 304 stainless steel.
- B. Coatings shall be durable and applied to clean surfaces. Exterior surfaces above ground shall receive a coating of Sherwin Williams' silver metallic paint or approved equal. The coating shall be applied according to coating manufacturer's specifications. Other exposed ferrous metal shall receive asphalt-based varnish, or approved equal, applied according to the coating manufacturer's specifications. Bonnets and caps shall be painted based on NFPS Standard 291 recommendations shown in Figure 1 below per flow testing results after approval by the Engineer.

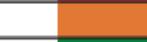

<i>Bonnet and Cap Colors</i>			
Color Name	Code	Color	Available Flow
Red	C		Less than 500 GPM
Orange	B		500-999 GPM
Green	A		1,000-1,499 GPM
Light Blue	AA		1,500 GPM & above

Figure 1: Bonnet and Cap Color Based on Flow Rate Calculated at 20 psi Residual Pressure

511.7 Water Flow Testing for Fire Hydrants

A. Guidelines

These guidelines are to be followed when a building, facility, residential subdivision, or multi-family dwelling units, within the City of New Braunfels or its Extraterritorial Jurisdiction, ETJ, is required to have a water (fire) flow test completed.

All water flow testing criteria for the purposes of these guidelines and any other guidelines shall conform to the International Fire Code as adopted by the City of New Braunfels, NFPA 291.

This guide does not replace, nor supersede any codes and/or ordinances adopted by the City of New Braunfels, or determinations and positions of the Fire Chief or Fire Marshal.

Fire flow testing is the determination of actual flow conditions within a hydrant system. A hydrant system is the system of mains, whether looped or not, capable of providing fire flow to a site. A site may have one or more hydrant systems with different flow and pressure characteristics.

Available fire flow is measured in gallons per minute (gpm) at a residual pressure of 20 psi.

The water system shall pass all construction acceptance testing (bacteriological and hydrostatic) prior to flow testing.

B. Hydrant Requirements

Following is a list of requirements for fire hydrant acceptance.

1. Water system (water mains, valves, services, hydrants and all appurtenances) must be in place and have passed all NBU acceptance testing.
2. Fire hydrant spacing must be in compliance with International Fire Code and local city ordinance for new construction.
3. All fire hydrants must have a 5-inch Storz connection with a standard Storz cap (not a pentagon nut). The cap must be tight fitting so that it cannot be turned or taken off by hand.
4. All fire hydrants must be at a level so that the center of the 5-inch (Storz) connection will be a minimum of 18 inches above the planned finished grade.
5. All fire hydrants must be flow tested following the guidelines set forth in NFPA 291. Flow testing may only be done by a fire sprinkler company (licensed by the State Fire Marshal's Office), fire protection engineer (licensed by the Texas Board of Professional Engineers), or civil engineer (licensed by the Texas Board of Professional Engineers). Flow testing costs and coordination are the responsibility of the Contractor.
6. Engineer to provide NBU with updated CAD file (preferably GPS located, at the very least geospatially located) 3 business days prior to flow testing. NBU will number the new hydrants that will be used for the numbering on the flow testing form.

C. Flow Testing Requirements

Following is a list of steps for fire flow testing.

1. All valves in open position.
2. Follow flow testing procedures listed in NFPA 291 "Recommend Practice for Water Flow Testing and Marking of Hydrants."
3. Input information using NBU's *Fire Hydrant Flow Test Form (Appendix C)*.
4. Results of the flow test will be given to the New Braunfels Fire Marshal's Office, a copy to NBU and the Engineer. (NB Fire Marshal's Office – 424 S Castell Ave; NBU – 355 FM 306)
5. A copy of the state issued engineer license or fire sprinkler license of the person/company who performed the test must be included with the results which are turned in to the Fire Marshal's Office.
6. Flow tests must be able to be duplicated prior to final acceptance by NBU or New Braunfels Fire Department (NBFD).
7. Acceptance of the constructed water system will depend upon NBFD's and NBU's approval of the fire flow(s) of the hydrant(s), among other criteria.
8. NBU field inspector should be consulted prior to testing for observation and coordination purposes. Contractor should give NBU field inspector 48-hour notice prior to any flow testing.
9. NBU field inspector must be on-site during flow testing.

511.8 Construction Methods

A. Setting Valves, Drains and Air Releases

Unless otherwise indicated, main line valves, drain valves and piping, air and vacuum release assemblies and other miscellaneous accessories shall be set and jointed in the manner described for cleaning, laying, and jointing pipe.

Unless otherwise indicated, valves shall be set at the locations shown on the Drawings and such that their location does not conflict with other appurtenances such as curb ramps. Valves shall be installed so that the tops of operating stems will be at the proper elevation required for the piping at the location indicated above. Valve boxes and valve stem casings shall be firmly supported and maintained, centered and aligned plumb over the valve or operating stem, with the top of the box or casing installed flush with the finished ground or pavement in existing streets, and installed with the top of the box or casing approximately 6 inches below the standard street subgrade in streets which are excavated for paving construction or where such excavation is scheduled or elsewhere as directed by the Engineer or designated representative.

Drainage branches or air blowoffs shall not be connected to any sanitary sewer or submerged in any stream or be installed in any other manner that will permit back siphonage into the distribution system. Every drain line and every air release line shall have a full sized independent gate valve flanged directly to the main. Flap-valves, shear gates, etc., will not be accepted.

B. Setting Fire Hydrants:

Fire hydrants shall be located in a manner to provide accessibility and in such a manner that the possibility of damage from vehicles or conflict with pedestrian travel will be minimized. Unless otherwise directed, the setting of any hydrant shall conform to the following:

Hydrants between curb and sidewalk on public streets, shall be installed as shown on standard, with outermost point of large nozzle cap 6" to 18" behind back of curb. Where walk abuts curb, and in other public areas or in commercial areas, dimension from gutter face of curb to outermost part of any nozzle cap shall be not less than 3 feet, nor more than 6 feet, except that no part of a hydrant or its nozzle caps shall be within 6 inches of any sidewalk or pedestrian ramp. Fire hydrants shall not be installed within nine feet vertically or horizontally of any sanitary sewer line regardless of construction.

All hydrants shall stand plumb; those near curbs shall have the 5-inch Storz nozzle facing the curb and perpendicular to it. Hydrants shall be placed with no obstructions within 3' of the pentagonal operating nut. The hydrant bury mark shall be located at ground or other finish grade; nozzles of all new hydrants shall be approximately 18 inches above grade. Lower barrel length shall not exceed five (5) feet. Ground to bottom of connection pipe shall be 4 feet. Barrel extensions are not permitted unless approved by the Engineer or designated representative. Each hydrant shall be connected to the main by 6-inch ductile iron pipe; a 6-inch gate valve shall be installed in the line for individual shutoff of each new hydrant.

Fire hydrants on mains under construction (or out of service) shall be securely wrapped with a poly wrap bag (5 mils or greater) or envelope taped into place. When the mains are accepted and placed in service (or hydrant repaired or replaced) the bag shall be removed.

C. Pressure Taps: Refer to Section 510.3 of Standard Specification, "Pipe".

D. Plugging Dead Ends:

Standard plugs shall be inserted into the bells of all dead ends of pipes, tees or crosses and spigot ends shall be capped. All end plugs or caps shall be secured to the pipe conforming to Section 510.3 of Standard Specification, "Pipe".

E. Protective Covering:

Unless otherwise indicated, all flanges, nuts, bolts, threaded outlets and all other steel component shall be coal tar coated and shall be wrapped with standard minimum 8-mil low density polyethylene film or a minimum 4-mil cross laminated high-density polyethylene meeting ANSI/AWWA Specification C-105-current, with all edges and laps taped securely to provide a continuous and watertight wrap. Repair all punctures of the polyethylene, including those caused in the placement of bedding aggregates, with duct tape to restore the continuous protective wrap before backfilling.

F. Valve Box, Casing and Cover:

Stems of all buried valves shall be protected by valve box assemblies. Valve box castings shall conform to ASTM A48, Class 30B. Testing shall be verified by the manufacturer at the time of shipment. Each casting shall have cast upon it a distinct mark identifying the manufacturer and the country of origin.

G. Air Release Assemblies:

Shall be installed as directed by the engineer.

H. Pressure/Flow Control Valves:

Assemblies shall be installed as indicated.

I. Connections to Existing System:

Refer to Item No. 510, "Pipe" for connections to the existing system.

J. Shutoffs:

Refer to Item No. 510, "Pipe" for shutoffs.

K. Abandonment:

Refer to Item No. 510, "Pipe" for abandonment.

511.9 Measurement

All types of valves will be measured per each. Fire hydrants and drain valves will be measured per each. Pressure/Flow control valve assemblies and both manual and automatic air release assemblies will be measured per each.

Unless indicated otherwise in the Drawings, bury depths that exceed 5.5 feet shall be considered subsidiary to the completed unit.

511.10 Payment

Payment shall include full compensation, in accordance with the pay item established in the bid, for excavation, furnishing, hauling and placing valves and barrel extensions including anchorage and all incidental and subsidiary materials and work; preparing, shaping, dewatering, shoring of trenches, bedding, placing and compacting backfill materials and for all other incidentals necessary to complete the installation, as indicated in the Drawings, complete in place.

Payment for iron fittings and for wet connections are covered in Section 510.6 of Standard Specification Item 510, "Pipe".

A. Valves: Valves will be paid for at the unit bid price for the size and type valve installed, including valve stem casing and cover, excavation and backfill, setting, adjusting to grade, anchoring in place, and other appurtenances necessary for proper operation.

- B. Fire Hydrants: Fire Hydrants installation (and flow testing) shall be paid for at the unit bid price for all fittings, piping, valves, between the main line and the fire hydrant; setting, adjusting to grade, anchoring in place, installing blue hydrant reflectors, and other appurtenances necessary for proper operation. Flow testing shall be coordinated and results recorded by Contractor;
- C. Pressure/Flow Control Assemblies: Pressure control and flow control valve assemblies will be paid for at the unit bid price, including box or vault, setting, adjusting to grade, anchoring in place, adjusting the control device to the required conditions, providing other appurtenances necessary for proper operation, and placing in operation.
- D. Drain Valve Assemblies: Drain valve installation shall be paid for at the unit bid price, including all fittings, piping, and valves between the main line and the drain valve; setting, adjusting to grade, anchoring in place, and other appurtenances necessary for proper operation;
- E. Manual Air Release: Manual air release installations will be paid for at the unit bid price and shall include valves, fittings, pipe, tapping the main, box and cover, and other appurtenances necessary for proper operation.
- F. Automatic Air-Vacuum Valves: Automatic air-vacuum release assemblies will be paid for at the unit bid price and will include the main line tap or outlet, all pipe, valves, fittings, box or vault and cover, and other appurtenances necessary for proper operation.

Payment, when included as a contract pay item, will be made under one of the following:

Pay Item: Valves, _____ Type, _____ Diameter	Per Each.
Pay Item: Fire Hydrants	Per Each.
Pay Item: Pressure or Flow Control Valve Assemblies	Per Each.
Pay Item: Drain Valve Assemblies	Per Each.
Pay Item: Manual Air Release Assemblies, _____ Diameter	Per Each.
Pay Item: Automatic Combination Air/Vacuum Release Valve Assembly, _____ Diameter	Per Each.

END8

Item No. 512**Conductive Trace Wire for Non-Metallic Pipe Installation****512.1 Description**

Install electrically continuous trace wire with access points as described herein to be used for locating non-metallic pipe with an electronic pipe locator after installation.

512.2 Materials**A. Trace Wire**

Trace wire for direct bury applications shall be twelve (12) gauge minimum solid copper or high-strength copper-clad steel (HS-CCS) with HDPE or HMWPE insulation recommended for direct burial.

Trace wire for trenchless applications shall be twelve (12) gauge minimum extra-high-strength copper-clad steel (EHS-CCS) with HDPE or HMWPE insulation recommended for direct burial.

Trace wire for all applications shall have insulation color per the APWA Uniform Color Code for the specific utility being marked.

B. Wire Connectors

Wire connectors must be watertight, provide electrical continuity, and be filled with dielectric moisture resistant grease. Connectors shall be 3M Direct Bury Splice Kits, Copperhead Snakebite Locking Connectors, or approved equal.

C. Access Points

Access Points shall meet the requirements of NBU SPL 18.1.0.

512.3 Construction Methods

Tracer wire shall be installed on all non-metallic water mains and force mains. The wire shall be installed in such a manner as to be able to properly trace all water mains or force mains without loss or deterioration of signal or without the transmitted signal migrating off the tracer wire.

Tracer wire shall be installed in the same trench and inside bored holes and casing with non-metallic pipe during pipe installation. It shall be secured to the pipe as required to ensure that the wire remains adjacent to the pipe. The trace wire shall be securely bonded together at all wire joints with an approved watertight connector to provide electrical continuity, and it shall be accessible at tracer wire access points installed per NBU standard details. Sections of wire shall be spliced together using approved splice caps and waterproof seals. Twisting the wires together is not acceptable. No bare tracer wire shall be accepted. Detection tape shall not be used in lieu of tracer wire.

A. Wastewater – Force Mains

For access points along force mains, tracer wire access points shall be placed at intervals of no greater than 500 feet including one at the pump station and one at the discharge point.

B. Water

Tracer wire access points are to be placed at intervals no greater than 600' and adjacent to isolation valves or fire hydrants.

C. Pipe Application

At the point of connection between cast or ductile iron water mains, with any non-iron water main, the tracer wire shall be properly connected to the iron pipe with a cad weld or approved equivalent. Tracer wire welds shall be completely sealed with the use of an approved mastic type sealer specifically manufactured for underground use. Mastic shall be applied in a thick coat a minimum of 2 inches thick and shall be protected from contamination by the backfill material with the use of a plastic membrane.

Tracer wire shall be laid flat and securely affixed to the top of the pipe at 10-foot intervals. The wire shall be protected from damage during the execution of the works. No breaks or cuts in the tracer wire or tracer wire insulation shall be permitted. At water service saddles, the tracer wire shall not be allowed to be placed between the saddle and the water main.

The tracer wire will be allowed some slack to allow for bends in laying and for future installation of joints, splices, tapping saddles, etc. The slack should also be sufficient to allow for small earth movements occurring in compacting trench fill or through natural subsidence.

At all water main end caps, a minimum, of 6 feet of tracer wire shall be extended beyond the end of the pipe, coiled and secured for future connections. The end of the tracer wire shall be spliced to the wire of a six-pound zinc anode and is to be buried at the same elevations as the water main.

D. Boring

For directional drilling, auguring or boring installations, four #12 tracer wires shall be installed with the pipe and connected to the tracer wire at both ends, or cad welded to the existing iron pipe at both ends.

E. Splicing

Except for approved spliced-in connections, tracer wire shall be continuous and without splices from valve chamber to valve chamber.

Spliced connections between the main line tracer wire and branch connection tracer wire shall only be allowed at water main tees, crosses or at water services where a portion of the branch connection water main or water service is replaced with a non-iron or non-copper material. The branch connection tracer wire shall be a single tracer wire properly spliced to the main line tracer wire. Where the existing branch connection is neither iron nor copper, then the new branch connection tracer wire shall be properly spliced to the existing tracer wire on the branch connection.

When tying new construction to old construction, tracer wire will not be terminated to or on another tracer wire or metallic utility line unless the two systems are demonstrably compatible. This is to reduce the potential for rapid corrosion of one system due to a 'reverse' cathodic effect.

At all repair locations where there is existing tracer wire, the tracer wire shall be properly reconnected and spliced as outlined above.

512.4 Testing Requirements

Contractor shall perform a continuity test on all trace wire in the presence of the Engineer or the Engineers' representative.

- A. All tracer wire for new utility installations will be tested before acceptance. The test will take the following form:
 1. A standard 5-watt generator will be used to provide an AC current on the wire.
 2. The frequency of the signal from the generator will be initially restricted to 33 kHz or less.
 3. A standard handheld detector will be used to trace the signal.
- B. The installed tracer wire will be deemed to pass the test if using this set up:
 1. The tracer wire is accessible at all access points.
 2. The tracer wire can be traced from access point to access point.
 3. Widely spaced access points can be traced out in the worst case from each 'end' to a common meeting point between them.
 4. Depth readings are consistent and accurate to within 15 to 1 depth to diameter ratio.
- C. If the trace wire is found to be not continuous after testing, Contractor shall repair or replace the failed segment of the wire.

512.5 Measurement and Payment

There is no separate payment for the supply and installation of tracer wire on any construction or installation of non-metallic water main or force main by the Contractor. The Contractor shall consider the supply and installation of the tracer wire incidental to all construction of non-metallic water main and force main.

End

Item No. 515
Pipeline Testing and Acceptance

515.1 Description

This item shall consist of the testing and acceptance of water and wastewater pipes, including hydrostatic testing for pressure pipes, low pressure air testing for gravity pipes, deflection and settlement testing.

A. Tests shall be required in accordance with the following table:

	Bacteriological Testing	Hydrostatic Testing	Exfiltration Test	Infiltration Test	Low Pressure Air Test	Settlement Testing	Deflection Testing	CCTV Inspection
Water Mains	X	X						
PVC Gravity Sewer Mains					X	X	X	X
Other Gravity Sewer Mains			X	X		X	X	X
Force Mains		X						

515.2 Submittals

A. Furnish test reports as described below:

1. Submit written plan for disinfection.
2. Submit detailed hydrostatic test procedure 10 days prior to conducting the test.
3. Contractor shall submit his proposed pipe mandrels or testing balls to the E/A or his designated representative for concurrence prior to testing the line.
4. Submit Hydrostatic Pipe Test Reports.

515.3 Standards

A. The applicable provisions of the following standards shall apply as if written here in their entirety:

1. ASTM International (ASTM):

ASTM F2164	Standard Practice for Field Leak Testing of Polyethylene (PE) Pressure Piping Systems Using Hydrostatic Pressure
------------	--

ASTM F1417-11A	Standard Practice for Installation Acceptance of Plastic Non-pressure Sewer Line Using Low-Pressure Air
----------------	---

2. American Water Works Association (AWWA):

AWWA B300	Hypochlorites
AWWA C200	Steel Water Pipe, 6 In (150 mm) and Larger
AWWA C600	Installation of Ductile-Iron Mains and Their Appurtenances
AWWA C604	Installation of Buried Steel Water Pipe – 4 In. (100 mm) and Larger
AWWA C605	Underground Installation of Polyvinyl Chloride (PVC) and Molecularly Oriented Polyvinyl Chloride (PVCO) Pressure Pipe and Fittings
AWWA C651	Disinfecting Water Mains
AWWA M9	Concrete Pressure Pipe
AWWA M11	Steel Pipe – A Guide for Design and Installation
AWWA M23	PVC Pipe – Design and Installation
AWWA M41	Ductile-Iron Pipe and Fittings
AWWA M55	PE Pipe – Design and Installation

515.4 Products

A. Water for Testing

1. Obtain water for filling and testing the pipeline and provide all temporary pumps and piping necessary to fill the pipeline.
2. If chlorinated water is used, then dechlorinate it before disposal per all regulations.
3. Water for the Work shall be metered and furnished by the Contractor in accordance with of the Standard Contract Documents.

B. Test Plugs

1. Design plugs or blind flanges to withstand the test pressure on either side with only atmospheric pressure on the opposite side.
2. Provide a 30-inch access manhole in one side of the plug and a 12-inch flanged outlet on the other side of the plug unless shown differently on the Drawings.

C. Pressure Gauge

1. Use a pressure gauge having minimum divisions of 0.10 psi and an accuracy of 0.0625 psi. (One ounce per square inch.)

D. CCTV Equipment

1. General

Equipment used shall be designed for use in gravity wastewater collection systems per Specification Item No. 315 "CCTV Inspection".

515.5 EXECUTION

A. General

Perform tests in accordance with this Section, AWWA Standards, AWWA Manuals, and the supplier's recommendations.

B. Water Pipe Acceptance Testing

Acceptance testing for potable water pipes requires two tests, bacteriological and hydrostatic. Bacteriological testing should be done on the pipe after disinfection and prior to the hydrostatic testing, unless the pipe is isolated in the system such that there are no services or trunk line connected and approved by an NBU inspector. After the pipe has been installed and backfilled and all service laterals, fire hydrants and other appurtenances installed and connected, a hydrostatic test will be conducted by the Contractor.

1. Disinfection of Potable Water Lines

a. Preventing Contamination

The Contractor shall protect all piping materials from contamination during storage, handling and installation. Prior to disinfection, the pipeline interior shall be clean, dry, and unobstructed. All openings in the pipeline shall be closed with watertight plugs when pipe laying is stopped at the close of the day's work.

b. Cleaning

Prior to disinfection the Contractor shall clean the pipeline to remove foreign matter. For pipelines 16-inches in diameter or smaller, cleaning shall consist of flushing the pipeline. For pipelines greater than 16-inches in diameter, cleaning shall be performed by operating hydrants and blow-offs located at low points in the pipeline, or by mechanical means (sweeping or pigging).

c. Procedure and Dosage

i. The Contractor, at its expense, will supply the test gauges and the Sodium Hypochlorite conforming to ANSI/AWWA B300, which contains approximately five percent (5%) to fifteen percent (15%) available chlorine, and will submit for approval a written plan for the disinfection process. Calcium Hypochlorite conforming to ANSI/AWWA B300, which contains approximately 65 percent available chlorine by weight, may be used in granular form or in 5 g tablets for 16-inch diameter or smaller lines, if it is included as part of the written plan of disinfection that is approved by New Braunfels Utilities. The Contractor, at its expense, shall provide all other equipment, supplies and the necessary labor to perform the disinfection under the general supervision of the Utility.

ii. One connection to the existing system will be allowed with a valve arranged to prevent the strong disinfecting dosage from flowing back into the existing water supply piping. The valve shall be kept closed and locked in a valve box with the lid painted red. No other connection shall be made until the disinfection of the new line is complete and the water samples have met the established criteria. The valve shall remain closed at all times except when filling or flushing the line and must be manned during these operations. Backflow prevention in the form of a reduced pressure backflow assembly must be provided if the valve is left unattended. The new pipeline shall be filled completely with disinfecting solution by feeding the concentrated chlorine and approved water from the existing system

uniformly into the new piping in such proportions that every part of the line has a minimum concentration of 50 mg/liter available chlorine.

- iii. The disinfecting solution shall be retained in the piping for at least 24 hours and all valves, hydrants, services, stubs, etc. shall be operated so as to disinfect all their parts. After this retention period, the water shall contain no less than 25 mg/liter chlorine throughout the treated section of the pipeline.
- iv. For pipelines larger than 16-inches in diameter, the Contractor may use the AWWA C-651 "Slug Method" for disinfecting the pipeline. Chlorine shall be fed at a constant rate and at a sufficient concentration at one end of the pipeline to develop a slug of chlorinated water having not less than 100 mg/liter of free chlorine. The Contractor shall move the slug through the main so that all interior surfaces are exposed to the slug for at least three (3) hours. The chlorine concentration in the slug shall be measured as it moves through the pipeline. If the chlorine concentration drops below 50 mg/liter, the Contractor shall stop the slug and feed additional chlorine to the head of the slug to restore the chlorine concentration to at least 100 mg/liter before proceeding. As the slug flows past fittings and valves, related valves and hydrants shall be operated so as to disinfect appurtenances and pipe branches.
- v. Unless otherwise indicated, all quantities specified herein refer to measurements required by the testing procedures included in the current edition of "Standard Methods for the Examination of Water and Wastewater," jointly published by AWWA, WEF, and AHPA. The chlorine concentration at each step in the disinfection procedure shall be verified by chlorine residual determinations.

d. Final Flushing

The heavily chlorinated water shall then be carefully flushed from the potable water line until the chlorine concentration is no higher than the residual generally prevailing in the existing distribution system. Proper planning and appropriate preparations in handling, diluting, if necessary, and disposing of this strong chlorine solution is necessary to insure that there is no injury or damage to the public, the water system or the environment. The plans and preparations of the Contractor must be approved by NBU before flushing of the line may begin. Additionally, the flushing must be witnessed by an authorized representative of NBU.

Approval for discharge of the diluted chlorine water or heavily chlorinated water into the wastewater system must be obtained from New Braunfels Utilities. The line flushing operations shall be regulated by the Contractor so as not to overload the wastewater system or cause damage to the odor feed systems at the lift stations. The Utility shall designate its own representative to oversee the work. Daily notice of line discharging must be reported to New Braunfels Utilities Dispatch office.

2. Bacteriological Testing

After final flushing of the disinfecting solution, the system will be tested for bacteriological quality by the Utility and must be found free of coliform organisms before the pipeline may be placed in service. All stubs shall be tested before connections are made to existing systems.

- a. Contractor must collect two (2) sets of water samples taken at least twenty-four (24) hours apart. Each set shall consist of one (1) sample that is drawn from the end of the

main and additional samples that are collected at intervals of not more than 1000 feet along the pipeline.

- b. The Contractor, at its expense, shall install sufficient sampling taps at proper locations along the pipeline. Each sampling tap shall consist of a standard corporation cock installed in the line and extended with a copper tubing gooseneck assembly. After samples have been collected, the gooseneck assembly may be removed and retained for future use.
- c. Samples for bacteriological analysis will only be collected from suitable sampling taps in sterile bottles treated with sodium thiosulfate. Samples shall not be drawn from hoses or unregulated sources. The Utility, at its expense, will furnish the sterile sample bottles and may, at its discretion, collect the test samples with Utility personnel.
- d. If the initial disinfection fails to produce acceptable sample test results, the disinfection procedure shall be repeated at the Contractor's expense. Before the piping may be placed in service, two (2) consecutive sets of acceptable test results must be obtained.
- e. An acceptable test sample is one in which: (1) the chlorine level is similar to the level of the existing distribution system; (2) there is no free chlorine and (3) total coliform organisms are absent. An invalid sample is one, which has excessive free chlorine, silt or non-coliform growth as defined in the current issue of the "Standards Methods for the Examination of Water and Wastewater." If unacceptable sample results are obtained for any pipe, the Contractor may, with the concurrence of the Inspector, for one time only flush the lines and then collects a second series of test samples for testing by the Utility. After this flushing sequence is completed, any pipe with one or more failed samples must be disinfected again in accordance with the approved disinfection procedure followed by appropriate sampling and testing of the water.
- f. New Braunfels Utilities Water Quality Laboratory will notify the assigned Utility Inspector in writing of all test results. The Inspector will subsequently notify the Contractor of all test results. The Water Quality Laboratory will not release test results directly to the Contractor.

3. Hydrostatic Test

- a. The Contractor will furnish the pump and gauges for the tests. The Utilities Representative shall be present during the tests. The specified test pressures will be based on the elevation of the lowest point of the line or section under test. Before applying the specified test pressure, all air shall be expelled from the pipe. If permanent air vents are not located at all high points, the Contractor shall install corporation cocks at such points.
- b. Determine the HGL for each test section, and test such that the pressure range below is achieved (lower pressure at high point and higher pressure at low point).
 - i. Test pressure shall in no case be less than 200 psi, or more than 2X the working pressure.
- c. All drain hydrant and fire hydrant leads, with the main 6-inch gate valve open, the hydrant valve seats closed and nozzle caps open, shall be included in the test.
- d. Prior to pressure testing against an existing system valve, a bacteriological test shall be performed to determine potability of water.
- e. A hydrostatic test will be conducted on the entire project or each valved section to test for leakage. The leakage test shall be at 150 psi for at least 4 hours.

i. Allowable Leakage

Leakage shall be defined as the quantity of water that must be supplied into any test section of pipe to maintain the specified leakage test pressure (see above, "Pressure Pipe Leakage Test") after the air in the pipeline has been expelled and the pipe has been filled with water.

No pipe installation will be accepted if the leakage exceeds 25 gallons/24 hours/mile of pipe/inch nominal pipe diameter.

(25 gpd)
(in. - mi.)

ii. Location and Correction of Leakage

If such testing discloses leakage in excess of this specified allowable, the Contractor, at his expense, shall locate and correct all defects in the pipeline until the leakage is within the indicated allowance.

All visible leakage in pipe shall also be corrected by Contractor at his own expense.

C. Wastewater Pipe Acceptance Testing

Gravity sewer pipe installed in the New Braunfels Utility System shall be tested for exfiltration or infiltration as described below in "Exfiltration Test" and "Infiltration Test" or by acceptable low pressure air test, as described below. At the conclusion of either test series, the Work shall be further tested for pipeline settlement and also for deflection as described below. Finally, the pipe shall be inspected with closed circuit television (CCTV) camera per Specification Item No. 315 "CCTV Inspection".

Force main sewer pipe shall be tested in accordance with the hydrostatic test procedure outlined in the "Water Pipe Acceptance Testing."

The Contractor shall be solely responsible for making proper repairs to those elements which do not pass these test requirements.

1. Wastewater Exfiltration Test

- a. The pipeline shall be completely filled with water for its complete length or by sections as determined by the E/A. If tested for its complete length, the maximum head at any point shall not exceed 25 feet unless otherwise indicated. If tested in sections, the manholes in the test section shall be completely filled with water. After the pipeline has been filled and allowed to stand for 24 hours, the amount of exfiltration shall be calculated. Any amount in excess of 200 gallons per inch of inside pipe diameter per mile per day shall be cause for rejection.
- b. For portions of lines located within the Edwards Aquifer Recharge Zone or within any recharge area or recharge feature within the Edwards Aquifer Transition Zone, the minimum head during testing shall not be less than 2 feet and the leakage rate shall not exceed 50 gallons per inch of inside pipe diameter per mile per day. This rate shall apply for the entire portion of the line extending up to the first manhole located outside the recharge zone, recharge area, or recharge features indicated on Drawings and shall also be applicable for any recharge areas or recharge features which may be identified during construction. For construction within the 25-year flood plain, the exfiltration rate shall not exceed 10 gallons per inch diameter per mile of pipe per 24 hours at the same minimum test head.

2. Wastewater Infiltration Test

- a. When the pipe placed in easements is completed, the upper portion of the trench backfill shall be removed to a depth of not less than 18 inches below the finished surface and width equal to the original trench width. The trench shall then be flooded with water until it is completely saturated and water stands in the ditch a minimum of 12 inches deep. In cases of steep terrain, earthen dikes shall be used to assure that water will stand over the trench. After it is apparent that the trench is completely saturated, the main shall then be inspected with closed-circuit television for infiltration. Any section of the main or any service stub that indicates infiltration above the maximum quantity specified shall be cause for rejection.
- b. This procedure shall not be used for pipes installed in areas where the Plasticity Index (P.I.) of the surrounding material is 20 or higher or where the backfill material has a P.I. of 20 or more.
- c. For portions of lines located within the Edwards Aquifer Recharge Zone or within any recharge area or recharge feature within the Edwards Aquifer Transition Zone, the total infiltration as determined by water test, must be at a rate not greater than 50 gallons per inch of pipe diameter per mile of pipe per 24 hours at a minimum test head of two feet. This rate shall apply for the entire portion of the line extending up to the first manhole located outside the recharge zone, recharge area, or recharge features indicated on Drawings and shall also be applicable for any recharge areas or recharge features which may be identified during construction. For construction within the 25-year flood plain, the infiltration rate shall not exceed 10 gallons per inch diameter per mile of pipe per 24 hours at the same minimum test head.
- d. If the quantity of infiltration exceeds the maximum quantity specified, remedial action must be undertaken to reduce the infiltration to an amount within the limits specified.

3. Low Pressure Air Test of Plastic Gravity Flow Wastewater Lines

Wastewater lines, at the discretion of the E/A, shall be air tested between manholes. Backfilling to grade shall be completed before the test and all laterals and stubs shall be capped or plugged by the Contractor so as not to allow air losses, which could cause an erroneous, test result. Manholes shall be plugged so they are isolated from the pipe and cannot be included in the test. Use only qualified personnel to conduct the test.

a. Plugs

All plugs used to close the sewer for the air test shall be capable of resisting the internal pressures and must be securely braced. Place all air testing equipment above ground and allow no one to enter a manhole or trench where a plugged sewer is under pressure. Release all pressure before the plugs are removed.

b. Pressure Relief Device

The testing equipment used must include a pressure relief device designed to relieve pressure in the sewer under test at 10 psi or less and must allow continuous monitoring of the test pressures in order to avoid excessive pressure. Use care to avoid the flooding of the air inlet by infiltrated ground water. (Inject the air at the upper plug if possible.)

c. Ground Water

Since the presence of ground water will affect the test results, test holes shall be dug to the pipe zone at intervals of not more than 100 feet and the average height of ground water above the pipe (if any) shall be determined before starting the test.

d. Test Procedure

- i. The E/A may, at any time, require a calibration check of the instrumentation used. All air used shall pass through a single control panel. Clean the sewer to be tested and remove all debris where indicated. Wet the sewer prior to testing. The average back pressure of any groundwater shall be determined (0.433 psi) for each foot of average water depth (if any) above the sewer.
- ii. Add air slowly to the section of sewer being tested until the internal air pressure is raised to 4.0 psig greater than the average back pressure of any ground water that may submerge the pipe. After the internal test pressure is reached, allow at least 2 minutes for the air temperature to stabilize, adding only the amount of air required to maintain pressure. After the temperature stabilization period, disconnect the air supply. Determine and record the time in seconds that is required for the internal air pressure to drop from 3.5 psig to 2.5 psig greater than the average backpressure of any ground water that may submerge the pipe. Compare the time recorded with the specification time for the size and length of pipe as given in the following table:

Table for Low Pressure Air Testing of Plastic Pipe:

Minimum Specified Time Required For 1.0 psig Pressure Drop For Size and Length of Pipe Indicated								
Diameter of Pipe, (in.)	Specification Time (min: sec) for length shown							
	100 ft	150 ft	200 ft	250 ft	300 ft	350 ft	400 ft	450 ft
4	3:46	3:46	3:46	3:46	3:46	3:46	3:46	3:46
6	5:40	5:40	5:40	5:40	5:40	5:40	5:42	6:24
8	7:34	7:34	7:34	7:34	7:36	8:52	10:08	11:24
10	9:26	9:26	9:26	9:53	11:52	13:51	15:49	17:48
12	11:20	11:20	11:24	14:15	17:05	19:56	22:47	25:38
15	14:10	14:10	17:48	22:15	26:42	31:09	35:36	40:04
18	17:00	19:13	25:38	32:03	38:27	44:52	51:16	57:41
21	19:50	26:10	34:54	43:37	52:21	61:00	69:48	78:31
24	22:47	34:11	45:34	56:58	68:22	79:46	91:10	102:33
27	28:51	43:16	57:41	72:07	86:32	100:57	115:22	129:48
30	35:37	53:25	71:13	89:02	106:50	124:38	142:26	160:15
33	43:05	64:38	86:10	107:43	129:16	150:43	172:21	193:53
36	51:17	76:55	102:34	128:12	153:50	179:29	205:07	230:46

NOTES: 1. Specification times are as given in UNI-B-6 RECOMMENDED PRACTICE FOR LOW-PRESSURE TESTING OF INSTALLED PIPE -- by Uni-Bell PVC Pipe Association, 2655 Villa Creek Dr., Ste. 155, Dallas Texas 75234.

- iii. Any drop in pressure, from 3.5 psig to 2.5 psig (adjusted for groundwater level), in a time less than that required by the above table shall be cause for rejection. When the line tested includes more than one size pipe, the minimum time shall be that given for the largest size pipe included.
- e. Edwards Aquifer Recharge/Transition Zone Test Procedure
 - i. Low-pressure air tests must conform to the procedure described in ASTM F1417-11A or other equivalent procedures. For safety reasons, air testing of pipe sections will be limited to line sizes of 36 inches inside diameter or less. Lines that are 36 inches or larger inside diameter must be air tested at each joint.
 - ii. The minimum time allowable for the pressure to drop from 3.5 pounds per square inch to 2.5 pounds per square inch gauge during a joint test, regardless of pipe size, shall be twenty (20) seconds.
 - iii. For sections of pipe less than 36-inch inside diameter, the minimum time allowable for the pressure to drop from 3.5 pounds per square inch gauge to 2.5 pounds per square inch gauge must be computed by the following equation:

$$T = 0.0850 (D)(K)/(Q), \text{ where}$$

T = time for pressure to drop 1.0 pounds per square inch gauge in seconds;

K = 0.000419(D)(L), but not less than 1.0

D = nominal inside diameter in inches;

L = length of line of same pipe size in feet; and

Q = rate of loss, assume 0.0015 cubic feet per minute per square foot ($\text{ft}^3/\text{min}/\text{ft}^2$) of internal surface area.

- iv. Any drop in pressure, from 3.5 psig to 2.5 psig, in a time less than that required by the above formula shall be cause for rejection. When the line tested includes more than one size of pipe, the minimum time shall be that calculated for the largest size pipe included.

f. Manholes

- i. Manholes must be tested separately and independently in accordance with Standard Specification Item No. 304, "Manholes".

D. Settlement Testing

During the infiltration test or after the exfiltration test, the pipe will be TV inspected for possible settlement. When air testing has been used, water shall be flushed into the pipe to permit meaningful observations. Prior to flushing, the manholes and pipes should be cleared of all debris. Any pipe settlement which causes excessive ponding of water in the pipe shall be cause for rejection. Excessive ponding shall be defined as a golf ball (1-5/8" dia.) submerged at any point along the line.

E. Deflection Testing

Deflection tests shall be performed by the Contractor on all flexible and semi-rigid wastewater pipes. The tests shall be conducted after the final backfill has been in place at least 30 days.

Testing for in-place deflection shall be with a pipe mandrel or rigid ball sized at 95% of the inside diameter of the pipe. A second test of flexible and semi-rigid wastewater pipes 18 inch size and larger, also with a pipe mandrel or ball sized at 95% of the inside diameter of the pipe, shall be conducted by the Contractor 30 days prior to expiration of his warranty on the Work.

1. Test(s) must be performed without mechanical pulling devices and must be witnessed by the E/A or his designated representative.

2. Any deficiencies noted shall be corrected by the Contractor and the test(s) shall be redone.

F. Closed Circuit Television (CCTV) Inspection

1. CCTV Televising / Inspection shall be in accordance with Specification Item No. 315 "CCTV Inspection".

510.5 Measurement and Payment

No direct measurement or payment will be made for the work to be done or the equipment to be furnished under this Item but shall be considered subsidiary to the particular items required by the bid.

End

Item No. 522
Pre-Cast Concrete Vaults

522.1 Description

This item shall govern the furnishing of all labor, materials, equipment, incidentals, and transportation necessary for placing precast reinforced concrete valve vault.

522.2 Quality Assurance

A. Design Criteria:

1. Precast reinforced concrete valve vault shall conform:
 - a. To the requirements of ASTM C857 and C858 for underground precast concrete utility structures.
 - b. Be designed for the specific site conditions and construction document requirements.
 - c. Be designed to resist buoyant forces due saturated soil.
2. Wall and slab minimum thicknesses shall be as calculated to resist design forces but shall not be less than that required for: manufacture and handling; proper embedment of access hatch; proper installation of pipe penetration seal.

B. Test Requirements: Refer to ASTM C858 for testing requirements.

C. Permissible Variations:

1. Tolerances for precast sections shall conform to ASTM C858.
 - a. Deviations from the above tolerances will be acceptable if the sections can be fitted at the plant or job site and it is determined that an acceptable joint can be made. For this condition an acceptable joint is:
 - i. When two sections are fitted together on a flat surface, in proper alignment and in the position they will be installed, the longitudinal opening at any point shall not exceed 1 inch. Sections fitted together at the plant and accepted in this manner shall be match-marked for installation.

D. Inspection:

1. The quality of materials, the process of manufacture, and the finished valve vault shall be subject to inspection and approval by the Owner or an authorized representative at the manufacturing plant. In addition, the valve vault shall be subject to further inspection by the Owner at the Project Site prior to and during installation.

E. Cause for Rejection:

1. The valve vault shall be subject to rejection on account of failure to conform to any of the specification requirements. Individual sections of valve vault may be rejected because of the following:
 - a. Fractures or cracks in the vault.

- b. Defects that indicate imperfect proportioning, mixing and molding.
- c. Surface defects indicating honeycombed or open texture.
- d. Damaged ends, where such damage would prevent making a structurally sound and water tight joint.

522.3 Submittals

The submittal requirements of this specification item must include:

- A. Manufacturer's product data sheets.
- B. Concrete mix and test results.

522.4 Standards

The applicable provisions of the following standards shall apply as if written here in their entirety:

- A. American Society of Testing and Materials (ASTM) Standards:

ASTM C857	Standard Practice for Minimum Structural Design Loading for Underground Precast Concrete Utility Structures
ASTM C858	Standard Specification for Underground Precast Concrete Utility Structures
ASTM C31	Standard Practice for Making and Curing Concrete Test Specimens in the Field

- B. American Association of State Highway and Transportation Officials (AASHTO) Standards:

AASHTO M198-08	Standard Specification for Joints for Concrete Pipe, Manholes, and Precast Box Sections using Preformed Flexible Joint Sealants
----------------	---

- C. State Department of Highways and Public Transportation, Austin, Texas.

522.5 Delivery and Storage

- A. Coordinate delivery with installation where possible to avoid unnecessary handling and equipment movement. When stockpiling is required, storage shall be made as close as possible to the point of installation.
- B. Store precast sections on level blocking in a manner acceptable to the Engineer. No load shall be placed upon them until design strength is reached and curing completed. Shipment of sections may be made when the design strength and curing requirements have been met.

C. Store flexible gasket materials not on the box section, and joint lubricating compounds in a cool dry place. Gaskets and preformed plastic materials for pipe joint construction shall be kept clean, away from oil, grease, excessive heat and out of the direct rays of the sun.

522.6 Materials

A. Mixes

1. Concrete: Mixed in a central batch plant or other approved batching facility from which the quality and uniformity of the concrete can be assured. Transit mixed concrete will not be acceptable. Concrete shall be 5000 psi minimum.

B. Manufactured Products

1. Valve Vault: Materials, manufacture and curing of precast reinforced concrete valve vault shall conform to ASTM C858. Vault shall be a precast concrete structure in accordance with the Drawings and Specifications.

2. Cold Applied Preformed Gaskets:

- a. Cold applied preformed gaskets shall be suitable for sealing joints of tongue and groove concrete box sections. The gasket sealing the joint shall be produced from blends of refined hydrocarbon resins and plasticizing compounds reinforced with inert mineral filler and shall contain no solvents, irritating fumes, or obnoxious odors. The gasket joint sealer shall not depend on oxidizing, evaporating, or chemical action for its adhesive or cohesive strength, and shall be supplied in extruded rope-form of suitable cross-section. The size of the gasket joint sealer shall be in accordance with the manufacturer's recommendations and sufficient to obtain the squeeze-out as described in Paragraph 3.02.

- b. Gasket joint sealer shall be protected by a suitable removable two-piece wrapper. The two-piece wrapper shall be so designed that half may be removed longitudinally without disturbing the other half to facilitate application as noted below.

- c. The chemical composition of the gasket joint sealing compound shall conform to the requirements of AASHTO M198-08 1, Type B, Flexible Plastic Gasket (Bitumen).

3. Workmanship and Finish: Valve Vault shall be substantially free from fractures, large or deep cracks and surface roughness. The ends of the valve vault shall be normal to the walls and centerline of the valve vault within the limits of Permissible Variations specified above. The vault exterior shall be coated with a bituminous coating for areas to be install below grade.

4. Markings: The following information shall be clearly marked on each section. Markings shall be indented on the valve vault or painted thereon with waterproof paint.

- a. The load rating and ASTM Designation No. of the valve vault.
- b. The date of manufacture.
- c. The name or trade name of the manufacturer.

5. Manufacturers: Vault shall be manufactured by one of the following:

- a. Oldcastle Infrastructure, 1900 Rilling Rd, San Antonio, TX 78214.

- b. Capital Precast, 6905 South Old Bastrop Highway, San Marcos, TX 78666
- c. Forterra Pipe & Precast, 11710 Chapel Road, Lorena, TX 78655
- d. Capital Concrete Products, 5624 Highway 71 East, Del Walle, TX 78617
- e. ParkUSA, 8491 US Highway 87 E, San Antonio, TX 78263
- f. Approved Equal.

522.7 Construction Methods

A. Excavation and Embedment

- 1. Excavation and embedment shall conform to the requirements in TXDOT Standard Specification Item No. 400 "Excavation and Backfill for Structures."

B. Installation

1. Laying:

- a. Valve vault sections shall be installed such that the bottom section(s) shall be full sections. Partial sections, if necessary, shall be utilized for the topmost section only. Valve vault cover shall be separate from the vault walls.

2. Jointing:

- a. Joints using cold applied preformed plastic gaskets shall be made as follows:
 - i. A suitable primer of the type recommended by the manufacturer of the gasket joint sealer shall be brush- applied to the tongue and groove joint surfaces and the end surfaces and allowed to dry and harden. No primer shall be applied over mud, sand, dirt or sharp cement protrusions. Clean and dry the surface to the primed when primer is applied.
 - ii. Before laying the valve vault in the trench, attach the plastic gasket sealer around the tapered tongue or tapered groove near the shoulder or hub of each joint. Remove the paper wrapper from one side only of the two-piece wrapper on the gasket and press firmly to the clean, dry valve vault joint surface. Do not remove the outside wrapper until immediately before pushing the valve vault into its final position.
 - iii. When the tongue is correctly aligned with the flare of the groove, remove the outside wrapper on the gasket and pull or push home the valve vault with sufficient force and power (Backhoe shovel, chain hoist, ratchet hoist or winch) to cause the evidence of squeeze-out of the gasket material on the side of outside around the complex valve vault joint perimeter.
 - iv. When the atmospheric temperature is below 60 F, plastic joint seal gaskets shall either be stored in an area warmed to above 70 F, or artificially warmed to this temperature in a manner satisfactory to the Engineer. Apply gaskets to valve vault joints immediately prior to placing valve vault in trench, followed by connection to previously laid box section.

C. Backfill

1. After the valve vault has been placed, bedded, and jointed as specified and approved by the Owner or his authorized representative, perform backfilling in accordance with TxDOT Standard Specification Item No. 400 "Excavation and Backfill for Structures." Take special precautions in placing and compacting the backfill to avoid any movement of the valve vault or damage to the joints.

522.8 Measurement

Pre-cast concrete vaults of each size and type shall be measured per each. The measurement will be made between the ends of the vault along the central axis. For concrete vaults used in multiple barrel structures, the measured length will be the sum of the lengths of all barrels measured as described above.

522.9 Payment

"Pre-Cast Concrete Vault" shall be full compensation for constructing, furnishing and transporting vaults; excavation; disposal of surplus or unusable excavated material; providing, hauling, placing, preparing and shaping bedding material and leveling courses; concrete, reinforcing steel; jointing of vaults; connections to existing systems or structures; connections to new systems or structures; hauling, moving, placing and compacting backfill materials; installation and maintenance of temporary pavement repairs; temporary removal and replacement of pavement, curb, drainage structures, driveways, sidewalks, and any other improvements damaged or removed during construction;; and all other items of material, labor, equipment, tools and incidentals necessary to complete this work in accordance with the Drawings and specifications.

Payment will be made under one of the following:

Pay Item: Pre-Cast Concrete Vault, ____ ft. x ____ ft. Per Each

End

**Item No. 523
Floor Access Doors**

523.1 Description

This item shall govern the installation of access doors. This Section covers the labor, materials, equipment and services needed to install access doors, complete as indicated on the Drawings.

523.2 Quality Assurance/Acceptable Manufacturers:

A. Products that comply with the Specifications by the following manufacturers will be acceptable:

1. Halliday Products, Inc.
2. U.S.F. Fabrication
3. K&B Steel
4. EJ

523.3 Submittals

The submittal requirements of this specification item shall include:

- A. Shop Drawings.
- B. Operation and Maintenance Manuals.
- C. Structural calculations demonstrating that the door design meets the direct loading requirements listed in 523.7 or 523.8, as applicable, with a minimum fatigue life of 100,000 cycles. The structural calculations shall be signed and sealed by a professional engineer licensed in the state of Texas.

523.4 Delivery and Storage

Ship products in protective wood crates. Leave in crates until ready to install. Store on wood platform raised 6 inches above surrounding grade and protect with weather resistant covering.

523.5 Job Conditions

Floor access door frames shall be set into forms as concrete is placed. Be sure that frames are set and braced to prevent movement during placement of concrete.

523.6 Guarantees and Warranty

Manufacturer shall warrant that the complete system shall be free from defective material and workmanship for a minimum period of 5 years from date of Owner acceptance. The warranty shall be provided in writing starting from the date of acceptance by the Owner.

523.7 Floor Access Door For Pedestrian Loading (300 PSF)

- A. Door leaf shall be minimum 1/4-inch aluminum diamond pattern reinforced to support a minimum live load of 300 psf with a maximum deflection of 1/150th of the span.
- B. The frame shall be extruded aluminum with anchor flange around the perimeter.
- C. Door shall have sufficient number of compression spring operators to ensure that 15 lb. or less pull is required to open any single door leaf, and an automatic hold-open arm release handle.
- D. The opening arm for the door leaf shall be lockable with a standard pad lock to control unauthorized entry.
- E. Doors shall be outfitted with hold open arms to keep the covers in their upright, open positions.
- F. Doors shall be outfitted with a recessed lifting handle.
- G. All hardware shall be Type 316 stainless steel.
- H. Bituminous coating shall be applied to the surfaces in contact with concrete.
- I. Use channel frame when there is a concern of water or other liquids entering the access opening. Channel Frames are equipped with a drain port.
 - 1. Channel frames shall be provided with a 1-1/2-inch drainage coupling and shall be located in the corner of the frame.
- J. Door shall be outfitted with nut rail on all four sides for attaching hardware if hardware will be required to hang off access hatch.
- K. Door shall be outfitted with aluminum skirting that makes the overall height of the frame equal to the top slab thickness, for casting into concrete.
- L. For submersible pump applications where the cable penetrates through the hatch:
 - 1. Coordinate closely with pump/hatch manufacturers during design phase and clearly show the location of the notch on the Drawings.
 - 2. Provide a sufficient notch in the leaf plating to allow the submersible pump cable to penetrate the surface. Provide rubber grommet along the cut edge of the hatch leaf to prevent wear on the cables penetrating the opening. Reference drawings for size and location.
- M. Contractor shall verify that proposed equipment will fit through the access door opening and that the location of the doors will allow for easy removal of the equipment. Contractor shall provide the size doors specified if adequate or a larger size as required to remove the equipment from the vault, wet well, or other installation.

523.8 Floor Access Door For Non-Occasional Traffic Loading (H20-44)

- A. Door leaf shall be 1/2-inch galvanized steel diamond pattern reinforced to support AASHTO H-20-wheel load with a maximum deflection of 1/150th of the span.

- B. The frame shall be 1/2-inch thick steel with anchor studs welded around the perimeter.
- C. Cover shall be bolted to frame when closed with 316 stainless steel allen-head bolts to allow for direct traffic loading. An allen-head socket with torque wrench shall be provided with the door.
- D. Door shall have sufficient number of compression spring operators to ensure that 45 lb. or less pull is required to open any single door leaf, and an automatic hold-open arm release handle.
- E. The opening arm for the door leaf shall be lockable with a standard pad lock to control unauthorized entry.
- F. Doors shall be outfitted with hold open arms to keep the covers in their upright, open positions.
- G. Doors shall be outfitted with a recessed lifting handle.
- H. All hardware shall be Type 316 stainless steel.
- I. Use channel frame when there is a concern of water or other liquids entering the access opening. It is equipped with a drain port.
 - 1. Channel frames shall be provided with a 1-1/2-inch drainage coupling and shall be located in the corner of the frame.
- J. Door shall be outfitted with nut rail on all four sides for attaching hardware if hardware will be required to hang off access hatch.
- K. Door shall be outfitted with galvanized steel skirting that makes the overall height of the frame equal to the top slab thickness, for casting into concrete.

523.9 Safety Grate System

- A. Provide aluminum safety grate rated at 300 psf.
- B. Safety grate shall be designed to combine covering of the opening, fall through protection per OSHA standard 1910.23 and controlled confine space entry per OSHA standard 1910.146.
- C. The safety grate shall be powder coated safety orange color. The coating shall be a minimum thickness of 4 mils and be shop applied and cured per manufacturer recommendations.
- D. Grate openings shall be a minimum of 4 inches by 6 inches to allow for visual inspection, limited maintenance, and other adjustments while the safety grate is left in place. All hardware including hinges shall be stainless steel.
- E. All hardware including hinges shall be stainless steel.
- F. For H20-44 hatches, the safety grate system shall not bear any loading from the leaf above.

523.10 Execution

Floor Access Door Installation

- A. Floor access doors and frames shall be installed in accordance with manufacturer's written instructions. Access door frames shall be cast into concrete structures. Concrete shall be worked around frame to ensure complete embedment of anchors. Frame shall be secured to prevent movement during placement of concrete. Frames shall be level.
- B. Provide copper or PVC drains as necessary for access doors with integral drains. Connect drain piping to drain outlet of channel frame and extend to nearest wall of the structure. Drain shall not be routed across any access ladders or floor walking surfaces.
- C. Floor access door frames shall be set level within 3/32 inch across diagonal corners, unless floor slab is designed to be out of level, then the access door shall be set to same place as floor slab.
- D. Aluminum access door frames in contact with concrete shall be given a heavy coat of bituminous paint prior to installation.
- E. For non-occasional traffic loaded hatches (H20-44), the allen-head bolts must be tightened to 25 foot-pounds of torque and securely fastened using Loctite 242 whenever the cover is closed.

523.11 Measurement

"Installation of Access Doors", when included in the contract as a pay item, will be measured per each item successfully installed.

523.12 Payment

All work performed by this item will be considered subsidiary to other bid items unless it is included as a separate bid item in the contract documents then all work performed as required herein and measured as provided under "Measurement" will be paid for at the unit bid price. The bid prices shall include full compensation for furnishing all labor; all materials; all royalty and freight involved; all hauling and delivering on the road; and all tools, equipment and incidentals necessary to complete the work. Payment will not be made for unauthorized work.

Payment, when included as a contract pay items, will be made under one of the following:

Pay Item: Floor Access Doors Per Each.

Pay Item: Vault Access Hatches Per Each.

End

**Texas Department of Transportation
Standard Specifications**

Item 100

Preparing Right of Way

1. DESCRIPTION

Prepare the right of way and designated easements for construction operations by removing and disposing of all obstructions when removal of such obstructions is not specifically shown on the plans to be paid by other items.

2. MATERIALS

Furnish materials in conformance with the plans and Specifications.

3. CONSTRUCTION

Protect designated features on the right of way and prune trees and shrubs as directed. Do not park equipment, service equipment, store materials, or disturb the root area under the branches of trees designated for preservation. Follow all local and state regulations when burning. Pile and burn brush at approved locations as directed. Spread mulched material at approved locations as directed. Handle hazardous materials in accordance with Article 6.10., "Hazardous Materials."

Clear areas shown on the plans of all obstructions, except those landscape features that are to be preserved. Such obstructions include remains of houses and other structures, foundations, floor slabs, concrete, brick, lumber, plaster, septic tank drain fields, basements, abandoned utility pipes or conduits, equipment, fences, retaining walls, and other items as specified on the plans. Remove vegetation and other landscape features not designated for preservation, curb and gutter, driveways, paved parking areas, miscellaneous stone, sidewalks, drainage structures, manholes, inlets, abandoned railroad tracks, scrap iron, and debris, whether above or below ground. Remove culverts, storm sewers, manholes, and inlets in proper sequence to maintain traffic and drainage. Removal of live utility facilities is not included in this Item.

Perform tree and brush removal and trimming in accordance with Article 752.4, "Work Methods."

Notify the Engineer in writing when items not shown on the plans and not reasonably detectable (buried with no obvious indication of presence) are encountered and required to be removed. These items will be handled in accordance with Article 4.5., "Differing Site Conditions."

Remove obstructions not designated for preservation to 2 ft. below natural ground in areas receiving embankment. Remove obstructions to 2 ft. below the excavation level in areas to be excavated. Remove obstructions to 1 ft. below natural ground in all other areas. Remove trees and stumps to 6 in. below ground level. Plug the remaining ends of abandoned underground structures over 3 in. in diameter using concrete to form a tight closure. Backfill, compact, and restore areas where obstructions have been removed unless otherwise directed. Use approved material for backfilling. Dispose of wells in accordance with Item 103, "Disposal of Wells."

Accept ownership, unless otherwise directed, and dispose of removed materials and debris at locations off the right of way in conformance with local, state, and federal requirements.

3.1. **Tree Protection.** Install tree protection for trees designated for preservation. Unless otherwise shown on the plans, install tree protection along the drip line of the trees using 4-ft. tall chain link fencing with line posts no more than 10 ft. apart. Install tree protection before beginning work.

4. MEASUREMENT

This Item will be measured by the acre; by the 100-ft. station, regardless of the width of the right of way; or by each tree removed.

Tree removal diameter will be measured in accordance with Article 752.5, "Measurement."

Tree protection will be measured by the acre of trees protected, by the foot of fencing, or by each tree protected.

5. PAYMENT

For "acre" and "station" measurement, the work performed in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Preparing Right of Way." For "each" measurement, the work performed in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Preparing Right of Way (Tree)" of the diameter specified. This price is full compensation for removal and trimming of designated trees and shrubs; removal and disposal of structures and obstructions; backfilling of holes; furnishing and placing concrete for plugs; and equipment, labor, tools, and incidentals.

Total payment of this Item will not exceed 10% of the original Contract amount until final acceptance. The remainder will be paid on the estimate after final acceptance in accordance with Article 5.12., "Final Acceptance."

5.1. **Tree Protection.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid as follows.

5.1.1. **Subsidiary Work.** The following will not be measured or paid for directly, but will be subsidiary to "Tree Protection":

- protection for Contractor project-specific locations inside and outside the right of way;
- repair to areas to be protected that are damaged by Contractor operations;
- removal and re-installation of devices and features needed for the convenience of the Contractor;
- finish grading and dressing upon removal of the protection; and
- minor adjustments, including, but not limited to, plumbing posts and re-attaching protection.

5.1.2. **Installation.** Installation will be paid for as "Tree Protection (Install)." This price is full compensation for furnishing and operating equipment and for labor, materials, tools, and incidentals.

5.1.3. **Removal.** Removal will be paid for as "Tree Protection (Remove)." This price is full compensation for furnishing and operating equipment and for proper disposal, labor, materials, tools, and incidentals.

Item 104

Removing Concrete

1. DESCRIPTION

Break, remove, and salvage or dispose of existing hydraulic cement concrete.

2. CONSTRUCTION

Remove existing hydraulic cement concrete from locations shown on the plans. Avoid damaging concrete that will remain in place. Saw-cut and remove the existing concrete to neat lines. Replace any concrete damaged by the Contractor at no expense to the Department. Accept ownership and properly dispose of broken concrete in conformance with federal, state, and local regulations unless otherwise shown on the plans.

3. MEASUREMENT

Removing concrete pavement, floors, porches, patios, riprap, medians, foundations, sidewalks, driveways, and other appurtenances will be measured by the square yard (regardless of thickness) or by the cubic yard of calculated volume, in its original position.

Removing curb, curb and gutter, and concrete traffic barrier will be measured by the foot in its original position. The removal of monolithic concrete curb or dowelled concrete curb will be included in the concrete pavement measurement.

Removing retaining walls will be measured by the square yard along the front face from the top of the wall to the top of the footing.

This is a plans quantity measurement Item. The quantity to be paid is the quantity shown in the proposal, unless modified by Article 9.2., "Plans Quantity Measurement." Additional measurements or calculations will be made if adjustments of quantities are required.

4. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Removing Concrete" of the type specified. This price is full compensation for breaking the concrete; loading, hauling, and salvaging or disposing of the material; and equipment, labor, tools, and incidentals.

Removing retaining wall footings will not be measured or paid for directly but will be subsidiary to this Item.

Item 300

Asphalts, Oils, and Emulsions

1. DESCRIPTION

Provide asphalt cements, cutback and emulsified asphalts, performance-graded asphalt binders, and other miscellaneous asphalt materials as shown on the plans.

2. MATERIALS

Provide asphalt materials that meet the stated requirements when tested in conformance with the referenced Department, AASHTO, and ASTM test methods. Use asphalt containing recycled materials only if the recycled components meet the requirements of Article 6.9., "Recycled Materials." Provide asphalt materials that the Department has preapproved for use in accordance with [Tex-545-C](#).

Inform the Department of all additives or modifiers included in the asphalt binder as part of the facility quality plan, as required by [Tex-545-C](#), and provide that information to Department personnel. The Department reserves the right to prohibit the use of any asphalt additive or modifier.

Limit the use of polyphosphoric acid to no more than 0.5% by weight of the asphalt binder.

The use of re-refined engine oil bottoms is prohibited.

Acronyms used in this Item are defined in Table 1.

Table 1
Acronyms

Acronym	Definition
Test Procedure Designations	
Tex	Department
T or R	AASHTO
D	ASTM
Polymer Modifier Designations	
P	polymer-modified
SBS	styrene-butadiene-styrene block co-polymer
TR	tire rubber modifier (obtained from ground truck and passenger vehicle post-consumer tires)
AC	asphalt cement
AE	asphalt emulsion
AE-P	asphalt emulsion prime
A-R	asphalt-rubber
ARA	emulsified asphalt recycling agent
C	cationic
CRM	crumb rubber modifier
CSS	cationic slow setting
EAP&T	emulsified asphalt prime and tack
EBL	emulsified bonding layer
FDR	full-depth reclamation
H-suffix	harder residue (lower penetration)
HA	hot-applied
HF	high float
HRSS	hard residue surface sealant
HY	high yield
MC	medium-curing

Acronym	Definition
MS	medium-setting
MSCR	multiple stress creep recovery
NT	non-tracking
PCE	prime, cure, and erosion control
PG	performance grade
RC	rapid-curing
RS	rapid-setting
S-suffix	stockpile usage
SCM	special-use cutback material
SS	slow-setting
SY	standard yield
TRAIL	tracking resistant asphalt interlayer

2.1. **Asphalt Cement.** Provide AC that is homogeneous, water-free, and non-foaming when heated to 347°F, and in accordance with Table 2.

Table 2
Asphalt Cement

Property	Test Procedure	Viscosity Grade			
		AC-0.6		AC-1.5	
		Min	Max	Min	Max
Viscosity 140°F, poise 275°F, poise	T 202	40 0.4	80 —	100 0.7	200 —
Penetration, 77°F, 100g, 5 sec.	T 49	350	—	250	—
Flash point, C.O.C., °F	T 48	425	—	425	—
Solubility, %	T 44	99.0	—	99.0	—
Spot test	Tex-509-C	Neg.		Neg.	
Tests on residue from RTFOT: Viscosity, 140°F, poise Ductility, ¹ 77°F 5 cm/min., cm	T 240 T 202 T 51	— 100	400 —	— 100	1,000 —

1. If AC-0.6 or AC-1.5 ductility at 77°F is less than 100 cm, material is acceptable if ductility at 60°F is more than 100 cm.

2.2. **Polymer-Modified Asphalt Cement.** Provide polymer-modified AC that is smooth, homogeneous, and meets the requirements shown in Table 3. Supply samples of the base AC and polymer additives if requested.

Table 3
Polymer-Modified Asphalt Cement

Property	Test Procedure	Polymer-Modified Viscosity Grade											
		AC-12-5TR		NT-HA ¹		AC-15P		AC-20XP		AC-10-2TR			
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
Polymer		TR		—		SBS		SBS		TR			
Polymer content, % (solids basis)	Tex-533-C or Tex-553-C	5.0	—	—	—	3.0	—	—	—	2.0	—	5.0	—
Dynamic shear, G*/sin δ, 82°C, 10 rad/s, kPa	T 315	—	—	1.0	—	—	—	—	—	—	—	—	—
Dynamic shear, G*/sin δ, 64°C, 10 rad/s, kPa	T 315	—	—	—	—	—	—	1.0	—	—	—	1.0	—
Dynamic shear, G*/sin δ, 58°C, 10 rad/s, kPa	T 315	1.0	—	—	—	—	—	—	—	1.0	—	—	—
Viscosity													
140°F, poise	T 202	1,200	—	—	—	1,500	—	2,000	—	1,000	—	2,000	—
275°F, poise	T 202	—	—	—	—	—	8.0	—	—	—	8.0	—	10.0
275°F, Pa-s	T 316	—	—	—	4.0	—	—	—	—	—	—	—	—
Penetration, 77°F, 100 g, 5 sec.	T 49	110	150	—	25	100	150	75	115	95	130	75	115
Elastic recovery, 50°F, %	Tex-539-C	55	—	—	—	55	—	55	—	30	—	55	—
Polymer separation	Tex-540-C	None	—	—	—	None	—	None	—	None	—	None	—
Flash point, C.O.C., °F	T 48	425	—	425	—	425	—	425	—	425	—	425	—
Tests on residue from RTFOT aging and pressure aging:													
Creep stiffness S, -18°C, Mpa	T 240 and R 28	—	300	—	—	—	300	—	300	—	300	—	300
m-value, -18°C	T 313	0.300	—	—	—	0.300	—	0.300	—	0.300	—	0.300	—

1. This is a hot-applied TRAIL product.

2.3. **Cutback Asphalt.** Provide cutback asphalt that meets the requirements shown in Tables 4, 5, and 6 for the specified type and grade. Supply samples of the base AC and polymer additives if requested.

Table 4
Rapid-Curing Cutback Asphalt

Property	Test Procedure	Type-Grade	
		RC-250	
		Min	Max
Kinematic viscosity, 140°F, cSt	T 201	250	400
Water, %	D95	—	0.2
Flash point, T.O.C., °F	T 79	80	—
Distillation test:	T 78		
Distillate, percentage by volume of total distillate to 680°F			
to 437°F		40	75
to 500°F		65	90
to 600°F		85	—
Residue from distillation, volume %		70	—
Tests on distillation residue:			
Viscosity, 140°F, poise	T 202	600	2,400
Ductility, 5 cm/min., 77°F, cm	T 51	100	—
Solubility, %	T 44	99.0	—
Spot test	Tex-509-C	Neg.	

Table 5
Medium-Curing Cutback Asphalt

Property	Test Procedure	Type-Grade					
		MC-30		MC-800		MC-3000	
		Min	Max	Min	Max	Min	Max
Kinematic viscosity, 140°F, cSt	T 201	30	60	800	1,600	3,000	6,000
Water, %	D95	—	0.2	—	0.2	—	0.2
Flash point, T.O.C., °F	T 79	95	—	140	—	149	—
Distillation test:	T 78						
Distillate, percentage by volume of total distillate to 680°F							
to 437°F		—	35	—	—	—	—
to 500°F		30	75	—	40	—	15
to 600°F		75	95	45	85	15	75
Residue from distillation, volume %		50	—	75	—	80	—
Tests on distillation residue:							
Viscosity, 140°F, poise	T 202	300	1,200	300	1,200	300	1,200
Ductility, 5 cm/min., 77°F, cm	T 51	100	—	100	—	100	—
Solubility, %	T 44	99.0	—	99.0	—	99.0	—
Spot test	Tex-509-C		Neg.		Neg.		Neg.

Table 6
Special-Use Cutback Asphalt

Property	Test Procedure	Type-Grade	
		SCM I	
		Min	Max
Kinematic viscosity, 140°F, cSt	T 201	500	1,000
Water, %	D95	—	0.2
Flash point, T.O.C., °F	T 79	175	—
Distillation test:	T 78		
Distillate, percentage by volume of total distillate to 680°F			
to 437°F		—	—
to 500°F		—	0.5
to 600°F		20	60
Residue from distillation, volume %		76	—
Tests on distillation residue:			
Penetration, 100 g, 5 sec., 77°F	T 49	180	—
Solubility, %	T 44	99.0	—

2.4.

Emulsified Asphalt. Provide emulsified asphalt that is homogeneous, does not separate after thorough mixing, and meets the requirements for the specified type and grade shown in Tables 7, 8, 9, 10, and 10A–C.

Table 7
Emulsified Asphalt

Property	Test Procedure	Type-Grade							
		Rapid-Setting		Medium-Setting		Slow-Setting			
		HFRS-2		MS-2		SS-1		SS-1H	
		Min	Max	Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol 77°F, sec. 122°F, sec.	T 72	—	—	—	—	20	100	20	100
		150	400	100	300	—	—	—	—
Sieve test, %	T 59	—	0.1	—	0.1	—	0.1	—	0.1
Miscibility	T 59	—		—		Pass		Pass	
Cement mixing, %	T 59	—	—	—	—	—	2.0	—	2.0
Demulsibility, 35 mL of 0.02 N CaCl ₂ , %	T 59	50	—	—	30	—	—	—	—
Storage stability, 1 day, %	T 59	—	1	—	1	—	1	—	1
Freezing test, 3 cycles ¹	T 59	—		Pass		Pass		Pass	
Distillation test: Residue by distillation, % by wt. Oil distillate, % by volume of emulsion	T 59	65	—	65	—	60	—	60	—
		—	0.5	—	0.5	—	0.5	—	0.5
Tests on residue from distillation: Penetration, 77°F, 100 g, 5 sec.	T 49	100	140	90	160	90	160	40	100
Solubility, %	T 44	97.5	—	97.5	—	97.5	—	97.5	—
Ductility, 77°F, 5 cm/min., cm	T 51	100	—	100	—	100	—	80	—
Float test, 140°F, sec.	T 50	1,200	—	—	—	—	—	—	—

1. Applies only when the Engineer designates material for winter use.

Table 8
Cationic Emulsified Asphalt

Property	Test Procedure	Type-Grade							
		Rapid-Setting		Medium-Setting		Slow-Setting			
		CRS-2		CMS-2		CSS-1		CSS-1H	
		Min	Max	Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol 77°F, sec. 122°F, sec.	T 72	—	—	—	—	20	100	20	100
		150	400	100	350	—	—	—	—
Sieve test, %	T 59	—	0.1	—	0.1	—	0.1	—	0.1
Cement mixing, %	T 59	—	—	—	—	—	0.2	—	0.2
Coating ability and water resistance: Dry aggregate/after spray Wet aggregate/after spray	T 59	—		Good/Fair Fair/Fair		—		—	
		—		—		—		—	
Demulsibility, 35 mL of 0.8% Sodium dioctyl sulfosuccinate, %	T 59	70	—	—	—	—	—	—	—
Storage stability, 1 day, %	T 59	—	1	—	1	—	1	—	1
Particle charge	T 59	Positive		Positive		Positive		Positive	
Distillation test: Residue by distillation, % by wt. Oil distillate, % by volume of emulsion	T 59	65	—	65	—	60	—	60	—
		—	0.5	—	7	—	0.5	—	0.5
Tests on residue from distillation: Penetration, 77°F, 100 g, 5 sec.	T 49	90	160	90	200	90	160	40	110
Solubility, %	T 44	97.5	—	97.5	—	97.5	—	97.5	—
Ductility, 77°F, 5 cm/min., cm	T 51	100	—	100	—	100	—	80	—

Table 9
Polymer-Modified Emulsified Asphalt

Property	Test Procedure	Type-Grade	
		Rapid-Setting	
		HFRS-2P	
		Min	Max
Viscosity, Saybolt Furol 122°F, sec.	T 72	150 400	
Sieve test, %	T 59	— 0.1	
Demulsibility, 35 mL of 0.02 N CaCl ₂ , %	T 59	50 —	
Storage stability, 1 day, %	T 59	— 1	
Distillation test: ¹	T 59	65 —	
Residue by distillation, % by wt.		— 0.5	
Oil distillate, % by volume of emulsion		— —	
Tests on residue from distillation:			
Polymer content, wt. % (solids basis)	Tex-533-C	3.0 —	
Penetration, 77°F, 100 g, 5 sec.	T 49	90 140	
Solubility, %	T 44	97.0 —	
Viscosity, 140°F, poise	T 202	1,500 —	
Float test, 140°F, sec.	T 50	1,200 —	
Ductility, ² 39.2°F, 5 cm/min., cm	T 51	50 —	
Elastic recovery, ² 50°F, %	Tex-539-C	55 —	

1. Exception to T 59: Bring the temperature on the lower thermometer slowly to 350 ± 10°F. Maintain at this temperature for 20 min. Complete total distillation in 60 ± 5 min. from the first application of heat.
2. HFRS-2P must meet one of either the ductility or elastic recovery requirements.

Table 10
Polymer-Modified Cationic Emulsified Asphalt

Property	Test Procedure	Type-Grade											
		Rapid-Setting				Medium-Setting				Slow-Setting			
		CRS-2P		CHFRS-2P		CRS-2TR		CMS-1P ³		CMS-2P ³		CSS-1P	
Viscosity, Saybolt Furol 77°F, sec. 122°F, sec.	T 72	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
		—	—	—	—	—	—	10	100	—	—	20	100
		150	400	100	400	150	500	—	—	50	400	—	—
Sieve test, %	T 59	—	0.1	—	0.1	—	0.1	—	0.1	—	0.1	—	0.1
Demulsibility, 35 ml of 0.8% sodium dioctyl sulfosuccinate, %	T 59	70	—	60	—	40	—	—	—	—	—	—	—
Storage stability, 1 day, %	T 59	—	1	—	1	—	1	—	1	—	1	—	1
Particle charge	T 59	Positive		Positive		Positive		Positive		Positive		Positive	
Distillation test ¹ :	T 59	Residue by distillation, % by weight		Oil distillate, % by volume of emulsion		65	—	65	—	65	—	30	—
		—	0.5	—	0.5	—	—	3	—	0.5	—	60	—
Tests on residue from distillation:													
Polymer content, wt. % (solids basis)	Tex-533-C or Tex-553-C		3.0	—	3.0	—	5.0 ⁴	—	—	—	—	—	3.0
Penetration, 77°F, 100 g, 5 sec.	T 49	90	150	80	130	90	150	30	—	30	—	55	90
Viscosity, 140°F, poise	T 202	1,300	—	1,300	—	1,000	—	—	—	—	—	—	—
Solubility, %	T 44	97.0	—	95.0	—	98	—	—	—	—	—	97.0	—
Ductility, 77°F, 5 cm/min., cm	T 51	—	—	—	—	40	—	—	—	—	—	—	70
Float test, 140°F, sec.	T 50	—	—	1,800	—	—	—	—	—	—	—	—	—
Ductility, ² 39.2°F, 5 cm/min., cm	T 51	50	—	—	—	—	—	—	—	—	—	—	—
Elastic recovery, ² 50°F, %	Tex-539-C	55	—	55	—	—	—	—	—	—	—	—	—
Tests on residue from evaporative recovery:	R 78, Procedure B												
Nonrecoverable creep compliance of residue, 3.2 kPa, 52°C, kPa ⁻¹		—	—	—	—	—	—	—	2.0	—	4.0	—	—

- Exception to T 59: Bring the temperature on the lower thermometer slowly to $350 \pm 10^{\circ}\text{F}$. Maintain at this temperature for 20 min. Complete total distillation in 60 ± 5 min. from the first application of heat.
- CRS-2P must meet one of either the ductility or elastic recovery requirements.
- With all precertification samples of CMS-1P or CMS-2P, submit certified test reports showing the type and percent of rejuvenator and/or latex added. Submit samples of these raw materials if requested by the Engineer.
- Modifier type is TR. Determined in accordance with [Tex-553-C](#).

Table 10A
Non-Tracking Tack Coat Emulsion¹

Property	Test Procedure	NT-HRE		NT-RRE		NT-SRE	
		Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol, 77°F, sec.	T 72	15	—	15	—	10	100
Storage stability, 1 Day, %	T 59	—	1	—	1	—	1
Settlement, 5-day, %	T 59	—	5	—	5	—	5
Sieve test, %	T 59	—	0.30	—	0.30	—	0.1
Distillation test: ²	T 59	Residue by distillation, % by wt.		58		50	
Oil distillate, by volume of emulsion		—	1.0	—	1.0	—	1.0
Test on residue from distillation:							
Penetration, 77°F, 100 g, 5 sec.	T 49	—	20	15	45	40	90
Solubility, %	T 44	97.5	—	97.5	—	97.5	—
Dynamic shear, $G^*/\sin(\delta)$, 82°C, 10 rad/s, kPa	T 315	1.0	—	—	—	—	—

- These are emulsion-based TRAILS. Due to the hardness of the residue, these emulsions should be heated to 120–140°F prior to thorough mixing as the emulsion is being prepared for testing.
- Exception to T 59: Bring the temperature on the lower thermometer slowly to $350 \pm 10^{\circ}\text{F}$. Maintain at this temperature for 20 min. Complete total distillation in 60 ± 5 min. from first application of heat.

Table 10B
Spray-Applied Underseal Membrane Polymer-Modified Emulsions

Property	Test Procedure	EBL	
		Min	Max
Viscosity @ 77°F, SSF	T 72	20	100
Storage Stability ¹ , %	T 59	—	1
Demulsibility ²	T 59	55	—
Anionic emulsions — 35 ml of 0.02 N CaCl ₂ , %			
Cationic emulsions — 35 ml 0.8% sodium dioctyl sulfosuccinate, %			
Sieve Test ³ , %	T 59	—	0.05
Distillation Test ⁴	T 59	63	—
Residue by distillation, % by wt.		—	0.5
Oil portion of distillate, % by vol.			
Test on Residue from Distillation			
Elastic Recovery @ 50°F, 50 mm/min., %	Tex-539-C	60	—
Penetration @ 77°F, 100 g, 5 sec, 0.1 mm	T 49	80	130

1. After standing undisturbed for 24 hr., the surface must be smooth, must not exhibit a white or milky colored substance, and must be a homogeneous color throughout.
2. Material must meet demulsibility test for emulsions.
3. May be required by the Engineer only when the emulsion cannot be easily applied in the field.
4. The temperature on the lower thermometer should be brought slowly to 350 ± 10°F and maintained at this temperature for 20 min. The total distillation should be completed in 60 ± 5 min. from the first application of heat.

Table 10C
Full-Depth Reclamation Emulsion

Property	Test Procedure	Standard Yield (FDR EM-SY)		High Yield (FDR EM-HY) ²	
		Min	Max	Min	Max
Viscosity Saybolt Furol @ 77°F, sec.	T 72	20	100	20	100
Sieve test, %	T 59	—	0.1	—	0.1
Cement mixing, %	T 59	—	2.0	—	2.0
% Storage stability, 1 day, %	T 59	—	1	—	1
Distillation test ¹ :	T 59				
Residue by distillation, % by wt.		60	—	63	—
Oil portion of distillate, % by vol.		—	0.5	—	0.5
Test on residue from distillation:					
Penetration @ 77°F, dmm	T 49	40	95	120	—

1. The temperature on the lower thermometer should be brought slowly to 350 ± 10°F and maintained at this temperature for 20 min. The total distillation should be completed in 60 ± 5 min. from the first application of heat.
2. Provide a manufacturer's certificate of analysis (COA) with the type and percent of rejuvenator added.

2.5. **Specialty Emulsions.** Provide specialty emulsion that is either asphalt-based or resin-based and meets the requirements shown in Table 11 or Table 11A.

Table 11
Specialty Emulsions

Property	Test Procedure	Type-Grade					
		Medium-Setting				Slow-Setting	
		AE-P		EAP&T		PCE ¹	
		Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol 77°F, sec. 122°F, sec.	T 72	— 15	— 150	— —	— —	10 —	100 —
Sieve test, %	T 59	—	0.1	—	0.1	—	0.1
Miscibility ²	T 59	—		Pass		Pass	
Demulsibility, 35 mL of 0.10 N CaCl ₂ , %	T 59	—	70	—	—	—	—
Storage stability, 1 day, %	T 59	—	1	—	1	—	—
Particle size, ⁵ % by volume < 2.5 μm	Tex-238-F³	—	—	90	—	90	—
Asphalt emulsion distillation to 500°F followed by Cutback asphalt distillation of residue to 680°F: Residue after both distillations, % by wt. Total oil distillate from both distillations, % by volume of emulsion	T 59 and T 78	40 25	— 40	— —	— —	— —	— —
Residue by distillation, % by wt.	T 59	—	—	60	—	—	—
Residue by evaporation, ⁴ % by wt.	T 59	—	—	—	—	60	—
Tests on residue after all distillation(s):							
Viscosity, 140°F, poise	T 202	—	—	800	—	—	—
Kinematic viscosity, ⁵ 140°F, cSt	T 201	—	—	—	—	100	350
Flash point C.O.C., °F	T 48	—	—	—	—	400	—
Solubility, %	T 44	97.5	—	—	—	—	—
Float test, 122°F, sec.	T 50	50	200	—	—	—	—

- Supply with each shipment of PCE:
 - a copy of a lab report from an approved analytical lab, signed by a lab official, indicating the PCE formulation does not meet any characteristics of a Resource Conservation Recovery Act (RCRA) hazardous waste;
 - a certification from the producer that the formulation supplied does not differ from the one tested and that no listed RCRA hazardous wastes or Polychlorinated Biphenyls have been mixed with the product; and
 - a Safety Data Sheet.
- Exception to T 59: In dilution, use 350 mL of distilled or deionized water and a 1,000-mL beaker.
- Use [Tex-238-F](#), beginning at "Particle Size Analysis by Laser Diffraction," with distilled or deionized water as a medium and no dispersant, or use another approved method.
- Exception to T 59: Leave sample in the oven until foaming ceases, then cool and weigh.
- PCE must meet either the kinematic viscosity requirement or the particle size requirement.

Table 11A
Hard Residue Surface Sealant

Property	Test Procedure	HRSS	
		Min	Max
Viscosity, Krebs unit, 77°F, Krebs units	D 562	45	75
Softening point, °F	<u>Tex-505-C</u> ¹	250	—
Uniformity	D 2939	Pass ²	
Resistance to heat	D 2939	Pass ³	
Resistance to water	D 2939	Pass ⁴	
Wet flow, mm	D 2939	—	0
Resistance to Kerosene (optional) ⁵	D 2939	Pass ⁶	
Ultraviolet exposure, UVA-340, 0.77 W/m ² , 50°C chamber, 8 hr. UV lamp, 5 min. spray, 3 hr. 55 min. condensation, 1,000 hr. total exposure ⁷	G 154	Pass ⁸	
Abrasion loss, 1.6 mm thickness, liquid only, %	ISSA TB-100	—	1.0
Residue by evaporation, % by weight	D 2939	33	—
Tests on residue from evaporation:			
Penetration, 77°F, 100 g, 5 sec.	T 49	15	30
Flash point, Cleveland open cup, °F	T 48	500	—
Tests on base asphalt before emulsification			
Solubility, %	T 44	98	—

1. Cure the emulsion in the softening point ring in a 200 ± 5°F oven for 2 hr.
2. Product must be homogenous and show no separation or coagulation that cannot be overcome by moderate stirring.
3. No sagging or slippage of film beyond the initial reference line.
4. No blistering or re-emulsification.
5. Recommended for airport applications or where fuel resistance is desired.
6. No absorption of Kerosene into the clay tile past the sealer film. Note sealer surface condition and loss of adhesion.
7. Other exposure cycles with similar levels of irradiation and conditions may be used with Department approval.
8. No cracking, chipping, surface distortion, or loss of adhesion. No color fading or lightening.

2.6.

Diluted Emulsions. Provide emulsified asphalt that is homogeneous, does not separate after thorough mixing, and meets the requirements for the specified type and grade shown in Tables 12 and 12A, where the suffixes 50/50, 40/60, and 30/70 mean 50% emulsion diluted with 50% water; 40% emulsion diluted with 60% water, and 30% emulsion diluted with 70% water, respectively. For example, CSS-1H 40/60 means 40% CSS-1H diluted with 60% water and AE-P 30/70 means 30% AE-P diluted with 70% water.

Table 12
Cationic Diluted Emulsified Asphalt

Property	Test Procedure	Type-Grade					
		Diluted Slow-Setting					
		CSS-1H 50/50		CSS-1H 40/60		CSS-1H 30/70	
		Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol 77°F, sec.	T 72						
		Report only		Report only		Report only	
Distillation test							
Residue by distillation, % by wt.	T 59	30	—	24	—	18	—
Oil distillate, % by volume of emulsion		—	0.5	—	0.5	—	0.5
Tests on residue from distillation:							
Penetration, 77°F, 100 g, 5 sec.	T 49	40	110	40	110	40	110
Solubility, %	T 44	97.5	—	97.5	—	97.5	—
Ductility, 77°F, 5 cm/min., cm	T 51	80	—	80	—	80	—

Table 12A
Diluted Specialty Emulsions

Property	Test Procedure	Type-Grade					
		Diluted Slow-Setting					
		AE-P 50/50		AE-P 40/60		AE-P 30/70	
		Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol 122°F, sec.	T 72			Report only	Report only	Report only	
Asphalt emulsion distillation to 500°F followed by cutback asphalt distillation of residue to 680°F: Residue after both distillations, % by wt. Total oil distillate from both distillations, % by volume of emulsion	T 59 and T 78	20 12.5	— 20	16 10.0	— 16	12 7.5	— 12
Tests on residue after all distillations:							
Solubility, % Float test, 122°F, sec.	T 44 T 50	97.5 50	— 200	97.5 50	— 200	97.5 50	— 200

2.7.

Recycling Agent. Recycling agent and emulsified asphalt recycling agent (ARA) must meet the requirements shown in Table 13. Additionally, recycling agent and residue from ARA, when added in the specified proportions to the recycled asphalt, must meet the properties shown on the plans.

Table 13
Recycling Agent and Emulsified Asphalt Recycling Agent

Property	Test Procedure	Recycling Agent		ARA-1		ARA-1P	
		Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol, 77°F, sec.	T 72	—	—	15	100	15	110
Sieve test, %	T 59	—	—	—	0.1	—	0.1
Miscibility ¹	T 59	—	—	No coagulation		—	
Residue by evaporation ² , % by wt.	T 59	—	—	60	—	—	—
Distillation test ³ :	T 59	—	—	—	—	60	65
Residue by distillation, % by wt.							
Oil distillate, % by volume of emulsion							
Penetration of distillation residue at 39.2°F, 100 g, 5 sec.	T 49	—	—	—	—	110	190
Tests on recycling agent or residue from evaporation:	T 48 T 201	400	—	400	—	400	—
Flash point, C.O.C., °F							
Kinematic viscosity 140°F, cSt 275°F, cSt			75 —	200 10.0	75 —	200 10.0	— —

1. Exception to T 59: Use 0.02 N CaCl₂ solution in place of water.
2. Exception to T 59: Maintain sample at 300°F until foaming ceases, then cool and weigh.
3. Exception to T 59: Bring the temperature on the lower thermometer slowly to 350 ± 10°F. Maintain at this temperature for 20 min. Complete total distillation in 60 ± 5 min. from first application of heat.

2.8.

Crumb Rubber Modifier. CRM consists of automobile and truck tires processed by ambient temperature grinding.

CRM must be:

- free of contaminants, including fabric, metal, and mineral and other non-rubber substances;
- free-flowing; and
- non-foaming when added to hot asphalt binder.

Ensure rubber gradation meets the requirements of the grades shown in Table 14 when tested in accordance with [Tex-200-F](#), Part I, using a 50-g sample.

Table 14
CRM Gradations

Sieve Size (% Passing)	Grade A		Grade B		Grade C		Grade D	Grade E
	Min	Max	Min	Max	Min	Max		
#8	100	—	—	—	—	—		
#10	95	100	100	—	—	—		
#16	—	—	70	100	100	—		
#30	—	—	25	60	90	100		
#40	—	—	—	—	45	100		
#50	0	10	—	—	—	—		
#200	—	—	0	5	—	—		

2.9.

Crack Sealer. Provide polymer-modified emulsified asphalt crack sealer meeting the requirements shown in Table 15. Provide rubber-asphalt crack sealer meeting the requirements shown in Table 16.

Table 15
Polymer-Modified Emulsified Asphalt Crack Sealer

Property	Test Procedure	Min	Max
Rotational viscosity, 77°F, cP	D2196, Method A	10,000	25,000
Sieve test, %	T 59	—	0.1
Storage stability, 1 day, %	T 59	—	1
Evaporation	Tex-543-C		
Residue by evaporation, % by wt.		65	—
Tests on residue from evaporation:			
Penetration, 77°F, 100 g, 5 sec.	T 49	35	75
Softening point, °F	T 53	140	—
Ductility, 39.2°F, 5 cm/min., cm	T 51	100	—

Table 16
Asphalt-Rubber Crack Sealer

Property	Test Procedure	Class A		Class B	
		Min	Max	Min	Max
CRM content, Grade A or Grade B, % by wt.	Tex-544-C	22	26	—	—
CRM content, Grade B, % by wt.	Tex-544-C	—	—	13	17
Virgin rubber content ¹ , % by wt.		—	—	2	—
Flash point ² , C.O.C., °F	T 48	400	—	400	—
Penetration ³ , 77°F, 150 g, 5 sec.	T 49	30	50	30	50
Penetration ³ , 32°F, 200 g, 60 sec.	T 49	12	—	12	—
Softening point, °F	T 53	—	—	170	—
Bond test, non-immersed, 0.5 in specimen, 50% extension, 3 cycles, 20°F ⁴	D5329	—	—	Pass	

- Provide certification that the Min % virgin rubber was added.
- Agitate the sealing compound using a 3/8-1/2-in. (9.5–12.7-mm) wide, square-end metal spatula to bring the material on the bottom of the cup to the surface (i.e., turn the material over) before passing the test flame over the cup. Start at one side of the thermometer, move around to the other, and then return to the starting point using 8–10 rapid circular strokes. Accomplish agitation in 3–4 sec. Pass the test flame over the cup immediately after stirring is completed.
- Exception to T 49: Substitute the cone specified in D217 for the penetration needle.
- Allow no crack in the crack-sealing materials or break in the bond between the sealer and the mortar blocks more than 1/4 in. deep for any specimen after completion of the test.

2.10.

Asphalt-Rubber Binders. Provide A-R binders that are mixtures of asphalt binder and CRM that have been reacted at elevated temperatures. Provide A-R binders meeting D6114 and containing at least 15% CRM by weight. Provide Type I or Type II, containing CRM Grade C, for use in hot-mix aggregate mixtures. Provide Type II or Type III, containing CRM Grade B, for use in surface treatment binder. Ensure binder properties meet the requirements shown in Table 17.

Table 17
A-R Binders

Property	Test Procedure	Binder Type					
		Type I		Type II		Type III	
		Min	Max	Min	Max	Min	Max
Apparent viscosity, 347°F, cP	D2196, Method A	1,500	5,000	1,500	5,000	1,500	5,000
Penetration, 77°F, 100 g, 5 sec.	T 49	25	75	25	75	50	100
Penetration, 39.2°F, 200 g, 60 sec.	T 49	10	—	15	—	25	—
Softening point, °F	T 53	135	—	130	—	125	—
Resilience, 77°F, %	D5329	25	—	20	—	10	—
Flash point, C.O.C., °F	T 48	450	—	450	—	450	—
Tests on residue from RTFOT: Retained penetration ratio, 39.2°F, 200 g, 60 sec., % of original	T 240 T 49	75	—	75	—	75	—

2.11.

Performance-Graded Binders. Provide PG binders that are smooth and homogeneous, show no separation when tested in accordance with [Tex-540-C](#), and meet the requirements shown in Table 18.

Separation testing is not required if:

- a modifier is introduced separately at the mix plant by injection in either the asphalt line or mixer,
- the binder is blended onsite in continuously agitated tanks, or
- binder acceptance is based on field samples taken from an in-line sampling port at the hot-mix plant after the addition of modifiers.

Table 18
Performance-Graded Binders

Property and Test Method	Performance Grade																	
	PG 58			PG 64			PG 70			PG 76			PG 82					
	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28
Average 7-day Max pavement design temperature, °C ¹	58			64			70			76			82					
Min pavement design temperature, °C ¹	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28
Original Binder																		
Flash point, T 48, Min, °C	230																	
Viscosity, T 316 ^{2,3} : Max, 3.0 Pa·s, test temperature, °C	135																	
Dynamic shear, T 315 ⁴ : G*/sin(δ), Min, 1.00 kPa, Max, 2.00 kPa ⁵ , Test temperature @ 10 rad/sec., °C	58			64			70			76			82					
Elastic recovery, D6084, 50°F, % Min ⁶	-	-	30	-	-	30	50	-	30	50	60	30	50	60	70	50	60	70
Rolling Thin Film Oven (RTFO) (T 240)																		
Mass change, T 240, Max, %	1.0																	
Dynamic shear, T 315 G*/sin(δ), Min, 2.20 kPa, Max, 5.00 kPa ⁵ , Test temperature @ 10 rad/sec., °C	58			64			70			76			82					
MSCR, T 350, recovery, 0.1 kPa, high PG temperature, % Min ⁶	-	-	20	-	-	20	30	-	20	30	40	20	30	40	50	30	40	50
Pressure Aging Vessel (PAV) Residue (R 28)																		
PAV aging temperature, °C	100																	
Dynamic shear, T 315 G*.sin (δ), Max, 5,000 kPa (Max, 6,000 kPa for δ ≥42°) Test temperature @ 10 rad/sec., °C	25	22	19	28	25	22	19	28	25	22	19	28	25	22	19	28	25	22
Creep stiffness, T 313 ^{7,8} S, Max, 300 Mpa, m-value, Min, 0.300 Test temperature @ 60 sec., °C	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18
Direct tension, T 314 ⁹ Failure strain, Min, 1.0% Test temperature @ 1.0 mm/min., °C	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18

1. Pavement temperatures are estimated from air temperatures using an algorithm contained in a Department-supplied computer program, may be provided by the Department, or may be obtained by following procedures outlined in AASHTO M 323 and R 25.
2. This requirement may be waived at the Department's discretion if the supplier warrants that the asphalt binder can be adequately pumped, mixed, and compacted at temperatures that meet all applicable safety, environmental, and constructability requirements. At test temperatures where the binder is a Newtonian fluid, any suitable standard means of viscosity measurement may be used, including capillary (T 201 or T 202) or rotational viscometry (T 316).
3. Viscosity at 135°C is an indicator of mixing and compaction temperatures that can be expected in the lab and field. High values may indicate high mixing and compaction temperatures. Additionally, significant variation can occur from batch to batch. Contractors should be aware that variation could significantly impact their mixing and compaction operations. Contractors are therefore responsible for addressing any constructability issues that may arise.
4. For quality control of unmodified asphalt binder production, measurement of the viscosity of the original asphalt binder may be substituted for dynamic shear measurements of G*/sin (δ) at test temperatures where the asphalt is a Newtonian fluid. Any suitable standard means of viscosity measurement may be used, including capillary (T 201 or T 202) or rotational (T 316) viscometry.
5. Max values for unaged and RTFO-aged dynamic shear apply only to materials used as substitute binders, as described in Item 341, "Dense-Graded Hot-Mix Asphalt," and Item 344, "Superpave Mixtures."
6. Elastic recovery (D6084) is not required unless MSCR (T 350) is less than the Min % recovery. Elastic recovery will be used for the acceptance criteria in this instance.
7. Silicone beam molds, as described in AASHTO TP 1-93, are acceptable for use.
8. If creep stiffness is below 300 Mpa, direct tension test is not required. If creep stiffness is between 300 and 600 Mpa, the direct tension failure strain requirement can be used instead of the creep stiffness requirement. The m-value requirement must be satisfied in both cases.

3. EQUIPMENT

Provide all equipment necessary to transport, store, sample, heat, apply, and incorporate asphalts, oils, and emulsions.

4. CONSTRUCTION

4.1. **Typical Material Use.** Use materials shown in Table 19, unless otherwise determined by the Engineer.

Table 19
Typical Material Use

Material Application	Typically Used Materials
Hot-mixed, hot-laid asphalt mixtures	PG binders, A-R binder Types I and II
Surface treatment	PG 58-22, AC-15P, AC-20XP, AC-10-2TR, AC-20-5TR, HFRS-2, MS-2, CRS-2, CRS-2TR, CMS-2P, HFRS-2P, CRS-2P, CHFRS-2P, A-R binder Types II and III
Surface treatment (cool weather)	AC12-5TR, RC-250, MC-800, MC-3000, CMS-2P
Precoating	PG 58-22, PG 64-22, SS-1, SS-1H, CSS-1, CSS-1H
Tack coat	PG binders, SS-1H, CSS-1H, EAP&T, TRAIL, EBL
Fog seal	SS-1, SS-1H, CSS-1, CSS-1H, CSS-1H 50/50, CSS-1H 40/60, CSS-1H 30/70, CMS-1P
Hot-mixed, cold-laid asphalt mixtures	AC-0.6, AC-1.5, PG 58-22, CMS-2
Patching mix	MC-800, SCM I
Recycling	AC-0.6, AC-1.5, recycling agent, ARA-1, ARA-1P
Crack sealing	Polymer-modified AE crack sealant, asphalt-rubber crack sealers (Class A, Class B)
Microsurfacing	CSS-1P
Prime	MC-30, AE-P, AE-P 50/50, AE-P 40/60, AE-P 30/70, EAP&T, PCE
Curing membrane	SS-1, SS-1H, CSS-1, CSS-1H, PCE
Erosion control	SS-1, SS-1H, CSS-1, CSS-1H, PCE
FDR-foaming	PG 64-22, FDR EM-SY, FDR EM-HY

4.2. **Storage and Application Temperatures.** Use storage and application temperatures in accordance with Table 20. Store and apply materials at the lowest temperature yielding satisfactory results. Follow the manufacturer's instructions for any agitation requirements in storage. Manufacturer's instructions regarding recommended application and storage temperatures supersede those shown in Table 19.

Table 20
Storage and Application Temperatures

Type-Grade	Application		Storage Maximum (°F)
	Recommended Range (°F)	Maximum Allowable (°F)	
AC-0.6, AC-1.5	200-300	350	350
AC-15P, AC-20-5TR, AC12-5TR, and AC10-2TR	300-375	375	360
RC-250	125-180	200	200
MC-30, AE-P	70-150	175	175
MC-800, SCM I	175-260	275	275
MC-3000	225-275	290	290
HFRS-2, MS-2, CRS-2, HFRS-2P, CRS-2P, CMS-2, CRS-2TR	120-160	180	180
SS-1, SS-1H, CSS-1, CSS-1H, PCE, EAP&T, CSS-1P, recycling agent, emulsified recycling agent, polymer-modified AE crack sealant	50-130	140	140
PG binders	275-350	350	350
Asphalt-rubber crack sealers (Class A, Class B)	350-375	400	-
A-R binder Types I, II, and III	325-425	425	425

5. MEASUREMENT AND PAYMENT

The work performed, materials furnished, equipment, labor, tools, and incidentals will not be measured or paid for directly, but will be subsidiary to or are included in payment for other pertinent items.

Item 320

Equipment for Asphalt Concrete Pavement

1. DESCRIPTION

Provide equipment to produce, haul, place, compact, and core asphalt concrete pavement.

2. EQUIPMENT

Ensure weighing and measuring equipment complies with Item 520, "Weighing and Measuring Equipment." Synchronize equipment to produce a mixture meeting the required proportions.

2.1. Production Equipment. Provide:

- drum-mix type, weigh-batch, or modified weigh-batch mixing plants that ensure uniform, continuous production;
- automatic proportioning and measuring devices with interlock cutoff circuits that stop operations if the control system malfunctions;
- visible readouts indicating the weight or volume of asphalt and aggregate proportions;
- safe and accurate means to take required samples by inspection forces;
- permanent means to check the output of metering devices and to perform calibration and weight checks; and
- additive-feed systems to ensure a uniform, continuous material flow in the desired proportion.

2.1.1. Drum-Mix Plants. Provide a mixing plant that complies with the requirements below.

2.1.1.1. Aggregate Feed System. Provide:

- at least one cold aggregate bin for each stockpile of individual materials used to produce the mix;
- bins designed to prevent overflow of material;
- scalping screens or other approved methods to remove any oversized material, roots, or other objectionable materials;
- a feed system to ensure a uniform, continuous material flow in the desired proportion to the dryer;
- an integrated means for moisture compensation;
- belt scales, weigh box, or other approved devices to measure the weight of the combined aggregate; and
- cold aggregate bin flow indicators that automatically signal interrupted material flow.

2.1.1.2. Reclaimed Asphalt Pavement (RAP) and Recycled Asphalt Shingles (RAS) Feed Systems. Provide at least one bin for each stockpile of RAP and RAS to weigh and feed the recycled material into the hot-mix plant.

2.1.1.3. Mineral Filler Feed System. Provide a closed system for mineral filler that maintains a constant supply with minimal loss of material through the exhaust system. Interlock the measuring device into the automatic plant controls to automatically adjust the supply of mineral filler to plant production and provide a consistent percentage to the mixture.

2.1.1.4. Heating, Drying, and Mixing Systems. Provide:

- a dryer or mixing system to agitate the aggregate during heating;
- a heating system that controls the temperature during production to prevent aggregate and asphalt binder damage;

- a heating system that completely burns fuel and leaves no residue, and
- a recording thermometer that continuously measures and records the mixture discharge temperature.

2.1.1.5. **Dust Collection System.** Provide a dust collection system to collect fines generated by the drying and mixing process and reintroduce them into the mixing drum.

2.1.1.6. **Asphalt Binder Equipment.** Supply equipment to heat binder to the required temperature. Equip the heating apparatus with a continuously recording thermometer located at the highest temperature point. Produce a 24-hr. chart of the recorded temperature. Place a device with automatic temperature compensation that accurately meters the binder in the line leading to the mixer.

Furnish a sampling port and locate in accordance with [Tex-500-C](#). Supply an additional sampling port between any additive blending device and mixer.

Supply an in-line viscosity-measuring device located between the blending unit and the mixing drum when asphalt-rubber (A-R) binder is specified. Provide a means to calibrate the meter onsite when an asphalt mass flow meter is used.

2.1.1.7. **Mixture Storage and Discharge.** Provide a surge-storage system to minimize interruptions during operations, unless otherwise approved. Furnish a gob hopper or other device to minimize segregation in the bin. Provide an automated system that weighs the mixture upon discharge and produces a ticket showing:

- date,
- project identification number,
- plant identification,
- mix identification,
- vehicle identification,
- total weight of the load,
- tare weight of the vehicle,
- weight of mixture in each load, and
- load number or sequential ticket number for the day.

2.1.1.8. **Truck Scales.** Provide standard platform scales at an approved location.

2.1.2. **Weigh-Batch Plants.** Provide a mixing plant that complies with Section 320.2.1.1., "Drum-Mix Plants," except as required below.

2.1.2.1. **Screening and Proportioning.** Provide enough hot bins to separate the aggregate and to control proportioning of the mixture type specified. Supply bins that discard excessive and oversized material through overflow chutes. Provide safe access for Inspectors to obtain samples from the hot bins.

2.1.2.2. **Aggregate Weigh Box and Batching Scales.** Provide a weigh box and batching scales to hold and weigh a complete batch of aggregate. Provide an automatic proportioning system with low bin indicators that automatically stop when material level in any bin is not enough to complete the batch.

2.1.2.3. **Asphalt Binder Measuring System.** Provide bucket and scales with enough capacity to hold and weigh binder for one batch.

2.1.2.4. **Mixer.** Equip mixers with an adjustable automatic timer that controls the dry and wet mixing period and locks the discharge doors for the required mixing period. Furnish a pug mill with a mixing chamber large enough to prevent spillage.

2.1.3. **Modified Weigh-Batch Plants.** Provide a mixing plant that complies with Section 320.2.1.2., "Weigh-Batch Plants," except as specifically described below.

2.1.3.1. **Aggregate Feeds.** Aggregate control is required at the cold feeds. Hot bin screens are not required.

2.1.3.2. **Surge Bins.** Provide one or more bins large enough to produce one complete batch of mixture.

2.2. **Hauling Equipment.** Provide trucks with enclosed sides to prevent asphalt mixture loss. Cover each load of mixture with waterproof tarpaulins when shown on the plans or required by the Engineer. Clean all truck beds before use to ensure the mixture is not contaminated. Coat the inside truck beds, when necessary, with an approved release agent from the Department's MPL.

2.3. **Placement and Compaction Equipment.** Provide equipment that does not damage underlying pavement. Comply with laws and regulations concerning overweight vehicles. Use other equipment that will consistently produce satisfactory results, when approved.

2.3.1. **Asphalt Paver.** Furnish a paver that will produce a finished surface that meets longitudinal and transverse profile, typical section, and placement requirements. Ensure the paver does not support the weight of any portion of hauling equipment other than the connection. Provide loading equipment that does not transmit vibrations or other motions to the paver that adversely affect the finished pavement quality. Equip the paver with an automatic, dual, longitudinal-grade control system and an automatic, transverse-grade control system.

2.3.1.1. **Tractor Unit.** Supply a tractor unit that can push or propel vehicles, dumping directly into the finishing machine to obtain the desired lines and grades to eliminate any hand finishing. Equip the unit with a hitch able to maintain contact between the hauling equipment's rear wheels and the finishing machine's pusher rollers while mixture is unloaded.

2.3.1.2. **Screed.** Provide a heated compacting screed that will produce a finished surface that meets longitudinal and transverse profile, typical section, and placement requirements. Screed extensions must provide the same compacting action and heating as the main unit unless otherwise approved.

2.3.1.3. **Grade Reference.** Provide a grade reference with enough support that the maximum deflection does not exceed 1/16 in. between supports. Ensure that the longitudinal controls can operate from any longitudinal grade reference, including a string line, ski, mobile reference, or joint matching shoes.

2.3.2. **Spray Paver.** Furnish a spray paver that will spray the membrane, apply the type and grade of mix shown on the plans, and level the surface of the pavement layer in a single pass. Configure the spray paver so that no equipment tires will drive through the membrane.

2.3.2.1. **Membrane Storage Tank and Distribution System.** Equip the spray paver with an insulated storage tank with a minimum capacity of 900 gal., unless otherwise approved. Provide a metered mechanical pressure sprayer on the spray paver to apply the membrane at the specified rate. Provide a readout device on the spray paver to monitor the membrane application rate.
Unless otherwise directed, furnish a volumetric calibration and strap stick for the tank in accordance with [Tex-922-K](#), Part I. Calibrate the tank within the previous 5 yr. of the date first used on the project. The Engineer may verify calibration accuracy in accordance with [Tex-922-K](#), Part II.

2.3.3. **Material Transfer Devices.** Provide the specified type of device when shown on the plans. Ensure the devices provide a continuous, uniform mixture flow to the asphalt paver. Provide windrow pickup equipment, when used, constructed to pick up substantially all roadway mixture placed in the windrow.

2.3.4. **Remixing Equipment.** Provide equipment, when required, that includes a pug mill, variable pitch augers, or variable diameter augers operating under a storage unit with a minimum capacity of 8 ton.

2.3.5. **Motor Grader.** Provide a self-propelled grader, when allowed, with a blade length of at least 12 ft. and a wheelbase of at least 16 ft.

2.3.6. **Thermal Imaging System or Hand-Held Thermal Camera.** Provide a thermal imaging system or hand-held thermal camera meeting the requirements of [Tex-244-F](#).

2.3.7. **Rollers.** Provide rollers meeting the requirements of Item 210, "Rolling," for each type of roller required for compaction.

2.3.8. **Straightedges and Templates.** Furnish 10-ft. straightedges and other templates as required or approved.

2.4. **Field Laboratory.** Provide and maintain a Type D structure (hot-mix asphalt laboratory) unless otherwise shown on the plans in accordance with Item 504, "Field Office and Laboratory."

2.5. **Coring Equipment.** Provide equipment suitable to obtain a pavement specimen meeting the dimensions for testing when coring is required.

3. MEASUREMENT AND PAYMENT

The work performed, materials furnished, equipment, labor, tools, and incidentals will not be measured or paid for directly, but will be subsidiary to pertinent items.

Item 341

Dense-Graded Hot-Mix Asphalt

1. DESCRIPTION

Construct a hot-mix asphalt (HMA) pavement layer composed of a compacted, dense-graded mixture of aggregate, asphalt binder, and additives mixed hot in a mixing plant. Payment adjustments will apply to HMA placed under this Specification unless the HMA is deemed exempt in accordance with Section 341.4.9.4., "Exempt Production."

2. MATERIALS

Furnish uncontaminated materials of uniform quality that meet the requirements of the plans and specifications.

Notify the Engineer of all material sources and before changing any material source or formulation. The Engineer will verify that the specification requirements are met and document all material source changes when the Contractor makes a source or formulation change. The Engineer may sample and test project materials anytime during the project to verify specification compliance in accordance with Item 6, "Control of Materials."

2.1. **Aggregate.** Furnish aggregates from sources that conform to the requirements shown in Table 1 and this Section. Aggregate requirements in this Section, including those shown in Table 1, may be modified or eliminated when shown on the plans. Additional aggregate requirements may be specified when shown on the plans. Provide aggregate stockpiles that meet the definitions in this Section for coarse, intermediate, or fine aggregate. Aggregate from reclaimed asphalt pavement (RAP) is not required to meet Table 1 requirements unless otherwise shown on the plans. Supply aggregates that meet the definitions in [Tex-100-E](#) for crushed gravel or crushed stone. The Engineer will designate the plant or the quarry as the sampling location. Provide samples from materials produced for the project. The Engineer will establish the Surface Aggregate Classification (SAC) and perform Los Angeles abrasion, magnesium sulfate soundness, and Micro-Deval tests. Perform all other aggregate quality tests shown in Table 1. Document all test results in the mixture design report. The Engineer may perform tests on independent or split samples to verify Contractor test results. Stockpile aggregates for each source and type separately. Determine aggregate gradations for mixture design and production testing based on the washed sieve analysis in accordance with [Tex-200-F](#), Part II.

2.1.1. **Coarse Aggregate.** Coarse aggregate stockpiles must have no more than 20% material passing the No. 8 sieve. Aggregates from sources listed in the Department's Bituminous Rated Source Quality Catalog (BRSQC) are preapproved for use. Use only the rated values for HMA listed in the BRSQC. Rated values for surface treatment (ST) do not apply to coarse aggregate sources used in HMA.

For sources not listed in the Department's BRSQC:

- build an individual stockpile for each material;
- request the Department test the stockpile for specification compliance;
- allow 30 calendar days for the Engineer to sample, test, and report results;
- use only when tested and approved; and
- once approved, do not add additional material to the stockpile unless otherwise allowed by the Engineer.

Provide coarse aggregate with at least the minimum SAC shown on the plans. SAC requirements apply only to aggregates used on the surface of travel lanes, unless otherwise shown on the plans. The SAC for sources in the Department's *Aggregate Quality Monitoring Program* (AQMP) ([Tex-499-A](#)) is listed in the BRSQC.

2.1.1.1.

Blending Class A and Class B Aggregates. Class B aggregate meeting all other requirements shown in Table 1 may be blended with a Class A aggregate to meet requirements for Class A materials, unless otherwise shown on the plans. When blending Class A and Class B aggregates to meet a Class A requirement, ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source, unless otherwise shown on the plans. Blend by volume if the bulk specific gravities of the Class A and Class B aggregates differ by more than 0.300. Coarse aggregate from RAP and recycled asphalt shingles (RAS) will be considered as Class B aggregate for blending purposes.

The Engineer may perform tests anytime during production, when the Contractor blends Class A and Class B aggregates to meet a Class A requirement. The Engineer will use the Department's mix design template, when electing to verify conformance, to calculate the percent of Class A aggregate retained on the No. 4 sieve by inputting the bin percentages shown from readouts in the control room at the time of production and stockpile gradations measured at the time of production. The Engineer may determine the gradations based on either washed or dry sieve analysis from samples obtained from individual aggregate cold feed bins or aggregate stockpiles. The Engineer may perform spot checks to verify the percent of Class A aggregate retained on the No. 4 sieve. The Engineer will use the gradations supplied by the Contractor in the mixture design report as an input for the template. A failing spot check will require confirmation with a stockpile gradation determined by the Engineer.

2.1.1.2.

Micro-Deval Abrasion. The Engineer will perform at least one Micro-Deval abrasion test in accordance with [Tex-461-A](#) for each coarse aggregate source used in the mixture design that has a rated source soundness magnesium (RSSM) loss value greater than 15 as listed in the BRSQC. The Engineer will perform testing before the start of production and may perform additional testing anytime during production. The Engineer may obtain the coarse aggregate samples from each coarse aggregate source or may require the Contractor to obtain the samples. The Engineer may waive all Micro-Deval testing based on a satisfactory test history of the same aggregate source.

The Engineer will estimate the magnesium sulfate soundness loss for each coarse aggregate source, when tested, using the following formula:

$$Mg_{est.} = (RSSM)(MD_{act.}/RSMD)$$

where:

$Mg_{est.}$ = magnesium sulfate soundness loss

RSSM = rated source soundness magnesium

$MD_{act.}$ = actual Micro-Deval percent loss

RSMD = rated source Micro-Deval

When the estimated magnesium sulfate soundness loss is greater than the maximum magnesium sulfate soundness loss specified, the coarse aggregate source will not be allowed for use unless otherwise approved. The Engineer will consult the Materials and Tests Division, and additional testing may be required before granting approval.

2.1.2.

Intermediate Aggregate. Aggregates not meeting the definition of coarse or fine aggregate will be defined as intermediate aggregate. Supply intermediate aggregates, when used, that are free of organic impurities. Supply intermediate aggregate from coarse aggregate sources, when used, that meet the requirements shown in Table 1, unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve, and verify that it meets the requirements in Table 1 for crushed face count ([Tex-460-A](#)) and flat and elongated particles ([Tex-280-F](#)).

2.1.3.

Fine Aggregate. Fine aggregates consist of manufactured sands, screenings, and field sands. Fine aggregate stockpiles must meet the fine aggregate properties in accordance with Table 1 and the gradation requirements in accordance with Table 2. Supply fine aggregates that are free of organic impurities. The Engineer may test the fine aggregate in accordance with [Tex-408-A](#) to verify the material is free of organic impurities. Unless otherwise shown on the plans, at most 10% of the total aggregate may be field sand or other uncrushed fine aggregate. Use fine aggregate, except field sand, from coarse aggregate sources that meet the requirements shown in Table 1, unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve and verify that it meets the requirements in Table 1 for crushed face count ([Tex-460-A](#)) and flat and elongated particles ([Tex-280-F](#)).

Table 1
Aggregate Quality Requirements

Property	Test Method	Requirement
Coarse Aggregate		
SAC	Tex-499-A (AQMP)	As shown on the plans
Deleterious material, %, Max	Tex-217-F, Part I	1.5
Decantation, %, Max	Tex-217-F, Part II	1.5
Micro-Deval abrasion, %	Tex-461-A	Note ¹
Los Angeles abrasion, %, Max	Tex-410-A	40
Magnesium sulfate soundness, 5 cycles, %, Max	Tex-411-A	30
Crushed face count, ² %, Min	Tex-460-A, Part I	85
Flat and elongated particles @ 5:1, %, Max	Tex-280-F	10
Fine Aggregate		
Linear shrinkage, %, Max	Tex-107-E	3
Sand equivalent, %, Min	Tex-203-F	45 ³
Organic impurities	Tex-408-A	Note ⁴

1. Used to estimate the magnesium sulfate soundness loss in accordance with Section 341.2.1.1.2., "Micro-Deval Abrasion."
2. Only applies to crushed gravel.
3. The Department may perform [Tex-252-E](#) on fine aggregates not meeting this minimum requirement. Fine aggregates with a methylene blue value of 10.0 mg/g or less may be used.
4. Optional test.

Table 2
Gradation Requirements for Fine Aggregate

Sieve Size	% Passing by Wt. Or Volume
3/8"	100
#8	70–100
#200	0–30

2.2.

Mineral Filler. Mineral filler consists of finely divided mineral matter such as agricultural lime, crusher fines, hydrated lime, or fly ash. Mineral filler is allowed unless otherwise shown on the plans. Use no more than 2% hydrated lime or fly ash, unless otherwise shown on the plans. Use no more than 1% hydrated lime if a substitute binder is used, unless otherwise shown on the plans or allowed. Test all mineral fillers except hydrated lime and fly ash in accordance with [Tex-107-E](#) to ensure specification compliance. The plans may require or disallow specific mineral fillers. Provide mineral filler, when used, that:

- is dry enough, free-flowing, and free of clumps and foreign matter as determined by the Engineer;
- does not exceed 3% linear shrinkage when tested in accordance with [Tex-107-E](#); and
- meets the gradation requirements shown in Table 3, unless otherwise shown on the plans.

Table 3
Gradation Requirements for Mineral Filler

Sieve Size	% Passing by Wt. or Volume
#8	100
#200	55–100

2.3. **Baghouse Fines.** Fines collected by the baghouse or other dust-collecting equipment may be reintroduced into the mixing drum.

2.4. **Asphalt Binder.** Furnish the type and grade of performance-graded (PG) asphalt binder shown on the plans that meets the requirements of Item 300, "Asphalts, Oils, and Emulsions."

2.5. **Tack Coat.** Furnish CSS-1H, SS-1H, EBL, or a PG binder with a minimum high-temperature grade of PG 58 for tack coat binder in accordance with Item 300. Specialized tack coat materials on the MPL for *Tracking Resistant Asphalt Interlayer (TRAIL)* will be allowed or required when shown on the plans. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use, unless required in conformance with the manufacturer's recommendation for approved TRAIL products on the MPL.

2.6. **Additives.** Use the type of additive specified when shown on the plans. Use the rate of additive specified in conformance with the manufacturer's recommendation. Additives that facilitate mixing and compaction or improve the quality of the mixture are allowed when approved. Provide the Engineer with documentation such as the bill of lading showing the quantity of additives used in the project unless otherwise directed.

2.6.1. **Lime and Liquid Antistripping Agent.** Lime or liquid antistripping agent is required when shown on the plans. When lime or a liquid antistripping agent is used, add in accordance with Item 301, "Asphalt Antistripping Agents." Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum.

2.6.2. **Warm-Mix Asphalt (WMA).** WMA is defined as HMA that is produced within a target temperature discharge range of 215°F and 275°F using approved WMA additives or processes from the MPL.

WMA is allowed for use on all projects and is required when shown on the plans. When WMA is required, the maximum placement or target discharge temperature for WMA will be set at a value at or below 275°F.

Department-approved WMA additives or processes may be used to facilitate mixing and compaction of HMA produced at target discharge temperatures above 275°F; however, such mixtures will not be defined as WMA.

2.6.3. **Compaction Aid.** Compaction aid is defined as a Department-approved chemical warm-mix additive, denoted as "chemical additive" on the MPL, that is used to facilitate mixing and compaction of HMA at a discharge temperature greater than 275°F.

Compaction aid is allowed for use on all projects. Compaction aid is required when shown on the plans or as required in Section 341.4.7.1., "Weather Conditions."

Warm-mix foaming processes, denoted as "foaming process" on the MPL, may be used to facilitate mixing and compaction of HMA at target discharge temperatures greater than 275°F; however, warm-mix foaming processes are not defined as a compaction aid.

2.7. **Recycled Materials.** Use of RAP and RAS is permitted unless otherwise shown on the plans. Use of RAS is restricted to only intermediate and base mixes unless otherwise shown on the plans. Do not exceed the maximum allowable percentages of RAP and RAS in accordance with Table 4. The allowable percentages in accordance with Table 4 may be decreased or increased when shown on the plans. Determine the asphalt binder content and gradation of the RAP and RAS stockpiles for mixture design purposes in accordance with [Tex-236-F](#), Part I. The Engineer may verify the asphalt binder content of the stockpiles anytime during production. Perform other tests on RAP and RAS when shown on the plans. Asphalt binder from RAP and

RAS is designated as recycled asphalt binder. Calculate and ensure that the ratio of the recycled asphalt binder to total binder does not exceed the percentages in accordance with Table 5 during mixture design and HMA production when RAP or RAS is used. Use a separate cold feed bin for each stockpile of RAP and RAS during HMA production. Surface, intermediate, and base mixes referenced in Table 4 and Table 5 are defined as follows, unless otherwise shown on the plans.

- **Surface.** The final HMA lift placed at the top of the pavement structure.
- **Intermediate.** Mixtures placed below an HMA surface mix and less than or equal to 8.0 in. below the riding surface.
- **Base.** Mixtures placed greater than 8.0 in. below the riding surface. Unless otherwise shown on the plans, mixtures used for bond breaker are defined as base mixtures.

2.7.1.

RAP. RAP is salvaged, milled, pulverized, broken, or crushed asphalt pavement. Fractionated RAP is defined as a stockpile that contains RAP material with at least 95.0% passing the 1/2-in. sieve, before burning in the ignition oven, unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 1/2-in. screen to fractionate the RAP.

Use of Contractor-owned RAP, including HMA plant waste, is permitted unless otherwise shown on the plans. Department-owned RAP stockpiles are available for the Contractor's use when the stockpile locations are shown on the plans. If Department-owned RAP is available for the Contractor's use, the Contractor may use Contractor-owned fractionated RAP and replace it with an equal quantity of Department-owned RAP. Department-owned RAP generated by required work on the Contract is available for the Contractor's use when shown on the plans. Perform any necessary tests to ensure Contractor- or Department-owned RAP is appropriate for use. The Department will not perform any tests or assume any liability for the quality of the Department-owned RAP unless otherwise shown on the plans. The Contractor will retain ownership of RAP generated on the project when shown on the plans.

Do not use Department- or Contractor-owned RAP contaminated with dirt or other objectionable materials. Do not use Department- or Contractor-owned RAP if the decantation value exceeds 5% and the plasticity index is greater than 8. Test the stockpiled RAP for decantation in accordance with [Tex-406-A](#), Part I. Determine the plasticity index in accordance with [Tex-106-E](#) if the decantation value exceeds 5%. The decantation and plasticity index requirements do not apply to RAP samples with asphalt removed by extraction or ignition.

Do not intermingle Contractor-owned RAP stockpiles with Department-owned RAP stockpiles. Remove unused Contractor-owned RAP material from the project site upon completion of the project. Return unused Department-owned RAP to the designated stockpile location.

Table 4
Max Allowable Amounts of RAP¹

Max Allowable Fractionated RAP (%)		
Surface	Intermediate	Base
20.0	30.0	35.0

1. Must also meet the recycled binder to total binder ratio shown in Table 5.

2.7.2.

RAS. RAS is defined as processed asphalt shingle material from manufacturing of asphalt roofing shingles or from re-roofing residential structures. Post-manufactured RAS is processed manufacturer's shingle scrap byproduct. Post-consumer RAS is processed shingle scrap removed from residential structures. Use of post-manufactured RAS or post-consumer RAS (tear-offs) is not permitted in surface mixtures unless otherwise shown on the plans. RAS may be used in intermediate and base mixtures unless otherwise shown on the plans. Up to 3% RAS may be used separately or as a replacement for fractionated RAP in accordance with Table 4 and Table 5. RAS may be used separately or in conjunction with RAP. Comply with all regulatory requirements stipulated for RAS by TCEQ.

Process the RAS by ambient grinding or granulating such that 100% of the particles pass the 3/8-in. sieve when tested in accordance with [Tex-200-F](#), Part I. Perform a sieve analysis on processed RAS material before extraction (or ignition) of the asphalt binder.

Add sand meeting the requirements of Table 1 and Table 2, or fine RAP, to RAS stockpiles if needed to keep the processed material workable. Any stockpile that contains RAS will be considered a RAS stockpile and be limited to no more than 3.0% of the HMA mixture in accordance with Table 4.

Certify compliance of the RAS with [DMS-11000](#), "Evaluating and Using Nonhazardous Recyclable Materials Guidelines." Treat RAS as an established nonhazardous recyclable material if it has not come into contact with any hazardous materials. Use RAS from shingle sources on the MPL. Remove all materials that are not part of the shingle, such as wood, paper, metal, plastic, and felt paper, before use. Determine the deleterious content of RAS material for mixture design purposes in accordance with [Tex-217-F](#), Part III. Do not use RAS if deleterious materials are more than 0.5% of the stockpiled RAS, unless otherwise approved. Submit a sample for approval before submitting the mixture design. The Department will perform the testing for deleterious material of RAS to determine specification compliance.

2.8.

Substitute Binders. No binder substitution will be allowed when shown on the plans. The Contractor may use a substitute PG binder shown in Table 5 instead of the PG binder originally specified, if using recycled materials, and if the substitute PG binder and mixture made with the substitute PG binder meet the following.

- The substitute binder meets the specification requirements for the substitute binder grade in accordance with Section 300.2.11., "Performance-Graded Binders."
- The mixture has less than 10.0 mm of rutting on the Hamburg wheel test ([Tex-242-F](#)) after the number of passes required for the originally specified binder. Use of substitute PG binders may be allowed only at the discretion of the Engineer if the Hamburg wheel test results are between 10.0 mm and 12.5 mm.

Table 5
Allowable PG Binders and Max Recycled Binder Ratios

Originally Specified PG Binder	Allowable Substitute PG Binder for Surface Mixes	Allowable Substitute PG Binder for Intermediate and Base Mixes	Max Ratio of Recycled Binder ¹ to Total Binder (%)		
			Surface	Intermediate	Base
76-22	70-22	70-22	15.0	25.0	30.0
70-22	Note ²	64-22	15.0	25.0	30.0
64-22	Note ²	Note ²	15.0	25.0	30.0
76-28	70-28	70-28	15.0	25.0	30.0
70-28	Note ²	64-28	15.0	25.0	30.0
64-28	Note ²	Note ²	15.0	25.0	30.0

1. Combined recycled binder from RAP and RAS. RAS is not permitted in surface mixtures unless otherwise shown on the plans.
2. No binder substitution is allowed.

3.

EQUIPMENT

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement."

4.

CONSTRUCTION

Produce, haul, place, and compact the specified paving mixture. In addition to tests required in accordance with the Specification, the Contractor may perform other QC tests as necessary. Anytime during the project, the Engineer may perform production and placement tests as necessary in accordance with Item 5, "Control of the Work." Schedule and participate in a mandatory pre-paving meeting with the Engineer on or before the first day of paving unless otherwise shown on the plans.

4.1.

Certification. Personnel certified by the Department-approved HMA certification program must conduct all mixture designs, sampling, and testing in accordance with Table 6. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning production and when personnel changes are made. Provide a mixture design developed and signed by a Level 2-certified specialist. Provide Level 1A-certified specialists at the plant during production operations. Provide Level 1B-certified specialists to conduct placement tests. Provide Level AGG101-certified specialists for aggregate testing.

Table 6
Test Methods, Test Responsibility, and Min Certification Levels

Test Description	Test Method	Contractor	Engineer	Level ¹
Aggregate and Recycled Material Testing				
Sampling	Tex-221-F	✓	✓	1A/AGG101
Dry sieve	Tex-200-F , Part I	✓	✓	1A/AGG101
Washed sieve	Tex-200-F , Part II	✓	✓	1A/AGG101
Deleterious material	Tex-217-F , Part I and Part III	✓	✓	AGG101
Decantation	Tex-217-F , Part II	✓	✓	AGG101
Los Angeles abrasion	Tex-410-A	—	✓	Department
Magnesium sulfate soundness	Tex-411-A	—	✓	Department
Micro-Deval abrasion	Tex-461-A	—	✓	AGG101
Crushed face count	Tex-460-A	✓	✓	AGG101
Flat and elongated particles	Tex-280-F	✓	✓	AGG101
Linear shrinkage	Tex-107-E	✓	✓	AGG101
Sand equivalent	Tex-203-F	✓	✓	AGG101
Methylene blue test	Tex-252-F	—	✓	Department
Bulk-specific gravity	Tex-201-F	✓	✓	AGG101
Organic impurities	Tex-408-A	✓	✓	AGG101
Asphalt Binder and Tack Coat Sampling				
Asphalt binder sampling	Tex-500-C , Part II	✓	✓	1A/1B
Tack coat sampling	Tex-500-C , Part III	✓	✓	1A/1B
Mix Design and Verification				
Design and job-mix formula (JMF) changes	Tex-204-F	✓	✓	2
Mixing	Tex-205-F	✓	✓	2
Molding (Superpave gyratory compactor [SGC])	Tex-241-F	✓	✓	1A
Laboratory-molded density	Tex-207-F , Part I and Part VI	✓	✓	1A
Rice gravity	Tex-227-F , Part II	✓	✓	1A
Ignition oven correction factors ²	Tex-236-F , Part II	✓	✓	1A
Indirect tensile strength	Tex-226-F	✓	✓	1A
Hamburg wheel test	Tex-242-F	✓	✓	1A
Witnessing mixing of correction factors	Tex-236-F , Part III	—	✓	1A/Department
Boil test	Tex-530-C	✓	✓	1A
Production Testing				
Selecting production random numbers	Tex-225-F , Part I	—	✓	1A
Mixture sampling	Tex-222-F	✓	✓	1A/1B
Molding (SGC)	Tex-241-F	✓	✓	1A
Laboratory-molded density	Tex-207-F , Part I and Part VI	✓	✓	1A
Rice gravity	Tex-227-F , Part II	✓	✓	1A
Gradation and asphalt binder content ²	Tex-236-F , Part I	✓	✓	1A
Control charts	Tex-233-F	✓	✓	1A
Moisture content	Tex-212-F , Part II	✓	✓	1A/AGG101
Hamburg wheel test	Tex-242-F	✓	✓	1A
Micro-Deval abrasion	Tex-461-A	—	✓	AGG101
Boil test	Tex-530-C	✓	✓	1A
Abson recovery	Tex-211-F	—	✓	Department

Test Description	Test Method	Contractor	Engineer	Level ¹
Placement Testing				
Selecting placement random numbers	Tex-225-F , Part II	—	✓	1B
Trimming roadway cores	Tex-251-F , Part I and Part II	✓	✓	1A/1B
In-place air voids	Tex-207-F , Part I and Part VI	✓	✓	1A
In-place density (nuclear method)	Tex-207-F , Part III	✓	—	1B
Establish rolling pattern	Tex-207-F , Part IV	✓	—	1B
Control charts	Tex-233-F	✓	✓	1A
Ride quality measurement	Tex-1001-S	✓	✓	Note ³
Segregation (density profile)	Tex-207-F , Part V	✓	✓	1B
Longitudinal joint density	Tex-207-F , Part VII	✓	✓	1B
Thermal profile	Tex-244-F	✓	—	1B
Shear bond strength test	Tex-249-F	—	✓	Department

1. Levels 1A, 1B, AGG101, and 2 are certification levels provided by the Hot Mix Asphalt Center certification program.
2. Refer to Section 341.4.9.2.3., "Production Testing," for exceptions to using an ignition oven.
3. Profiler and operator are required to be certified at the Texas A&M Transportation Institute facility when surface test Type B is specified.

4.2.

Reporting and Responsibilities. Use Department-provided templates to record and calculate all test data, including mixture design, production and placement QC and QA, control charts, thermal profiles, segregation density profiles, and longitudinal joint density. Obtain the current version of the templates from the Department's website or from the Engineer. The Engineer and the Contractor will provide any available test results to the other party when requested. The maximum allowable time for the Contractor and Engineer to exchange test data is as shown in Table 7, unless otherwise approved. The Engineer and the Contractor will immediately report to the other party any test result that requires suspension of production or placement, or a payment adjustment less than 1.000, or that fails to meet the specification requirements. Record and electronically submit all test results and pertinent information on Department-provided templates.

Subsequent sublots placed after test results are available to the Contractor, which require suspension of operations, may be considered unauthorized work. Unauthorized work will be accepted or rejected at the discretion of the Engineer in accordance with Article 5.3., "Conformity with Plans, Specifications, and Special Provisions."

Table 7
Reporting Schedule

Description	Reported By	Reported To	To Be Reported Within
Production Quality Control			
Gradation ¹	Contractor	Engineer	1 working day of completion of the subplot
Asphalt binder content ¹			
Laboratory-molded density ²			
Moisture content ³			
Boil test ⁴			
Production Quality Assurance			
Gradation ³	Engineer	Contractor	1 working day of completion of the subplot
Asphalt binder content ³			
Laboratory-molded density ¹			
Hamburg wheel test ⁵			
Boil test ⁴			
Binder tests ⁵			
Placement Quality Control			
In-place air voids ²	Contractor	Engineer	1 working day of completion of the lot
Segregation ¹			
Longitudinal joint density ¹			
Thermal profile ¹			

Description	Reported By	Reported To	To Be Reported Within
Placement Quality Assurance			
In-place air voids ¹	Engineer	Contractor	1 working day after receiving the trimmed cores ⁶
Segregation ³			1 working day of completion of the lot
Longitudinal joint density ³			5 working days after receiving the cores
Thermal profile ³		Contractor	2 working days of performing all required tests and receiving Contractor test data
Aging ratio ⁵			
Shear bond strength test ⁵			
Payment adjustment summary	Engineer	Contractor	

1. These tests are required on every subplot.
2. Optional test. When performed on split samples, report the results as soon as they become available.
3. To be performed at the frequency shown in Table 16 or as shown on the plans.
4. When shown on the plans.
5. To be reported as soon as the results become available.
6. Two days are allowed if cores cannot be dried to constant weight within 1 day.

The Engineer will use the Department-provided template to calculate all payment adjustment factors for the lot. Sublot samples may be discarded after the Engineer and Contractor sign off on the payment adjustment summary documentation for the lot.

Use the procedures described in [Tex-233-F](#) to plot the results of all QC and QA testing. Update the control charts as soon as test results for each subplot become available. Make the control charts readily accessible at the field laboratory. The Engineer may suspend production for failure to update control charts.

4.3. **Quality Control Plan (QCP).** Develop and follow the QCP in detail. Obtain approval for changes to the QCP made during the project. The Engineer may suspend operations if the Contractor fails to comply with the QCP.

Submit a written QCP before the mandatory pre-paving meeting. Receive approval of the QCP before beginning production. Include the following items in the QCP.

4.3.1. **Project Personnel.** For project personnel, include:

- a list of individuals responsible for QC with authority to take corrective action,
- current contact information for each individual listed, and
- current copies of certification documents for individuals performing specified QC functions.

4.3.2. **Material Delivery and Storage.** For material delivery and storage, include:

- the sequence of material processing, delivery, and minimum quantities to assure continuous plant operations;
- aggregate stockpiling procedures to avoid contamination and segregation;
- frequency, type, and timing of aggregate stockpile testing to assure conformance with material requirements before mixture production; and
- procedure for monitoring the quality and variability of asphalt binder.

4.3.3. **Production.** For production, include:

- loader operation procedures to avoid contamination in cold bins;
- procedures for calibrating and controlling cold feeds;
- procedures to eliminate debris or oversized material;
- procedures for adding and verifying rates of each applicable mixture component (e.g., aggregate, asphalt binder, RAP, RAS, lime, liquid antistrip, compaction aid, foaming process, and WMA);

- procedures for reporting job control test results; and
- procedures to avoid segregation and drain-down in the silo.

4.3.4.

Loading and Transporting. For loading and transporting, include:

- type and application method for release agents, and
- truck-loading procedures to avoid segregation.

4.3.5.

Placement and Compaction. For placement and compaction, include:

- proposed agenda for mandatory pre-paving meeting, including date and location;
- proposed paving plan (e.g., production rate, paving widths, joint offsets, and lift thicknesses);
- type and application method for release agents in the paver and on rollers, shovels, lutes, and other utensils;
- procedures for the transfer of mixture into the paver while avoiding physical and thermal segregation and preventing material spillage;
- process to balance production, delivery, paving, and compaction to achieve continuous placement operations and good ride quality;
- paver operations (e.g., speed, operation of wings, and height of mixture in auger chamber) to avoid physical and thermal segregation and other surface irregularities; and
- procedures to construct quality longitudinal and transverse joints.

4.4.

Mixture Design.

4.4.1.

Design Requirements. Use the dense-graded design procedure provided in [Tex-204-F](#), unless otherwise shown on the plans. Design the mixture to meet the requirements shown in Tables 1, 2, 3, 4, 5, 8, 9, and 10.

Design the mixture using an SGC, and 50 gyrations as the design number of gyrations (Ndesign). Use a target laboratory-molded density of 96.0% to design the mixture; however, adjustments can be made to the Ndesign value as shown in Table 9. The Ndesign level may be reduced to at least 35 gyrations at the Contractor's discretion.

Use a Department-approved laboratory on the MPL to perform the Hamburg wheel test and provide results with the mixture design, or provide the laboratory mixture and request that the Department perform the Hamburg wheel test. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel test results on the laboratory mixture design.

The Engineer will provide the mixture design when shown on the plans. The Contractor may submit a new mixture design anytime during the project. The Engineer will verify and approve all mixture designs (JMF1) before the Contractor can begin production.

Provide the Engineer with a mixture design report using the Department-provided template. Include the following items in the report:

- the combined aggregate gradation, source, specific gravity, and percent of each material used;
- the binder source and optimum design asphalt content;
- asphalt binder content and aggregate gradation of RAP and RAS stockpiles;
- the Ndesign level used on the SGC;
- results of all applicable tests;
- the mixing and molding temperatures;
- the signature of the Level 2 person or persons who performed the design;
- the date the mixture design was performed; and
- a unique identification number for the mixture design.

Table 8
Master Gradation Limits (% Passing by Wt. or Volume) and Void in Mineral Aggregate (VMA) Requirements

Sieve Size	DG-B Fine Base	DG-C Coarse Surface	DG-D Fine Surface	DG-F Fine Mixture
2"	—	—	—	—
1-1/2"	100.0 ¹	—	—	—
1"	98.0–100.0	100.0 ¹	—	—
3/4"	84.0–98.0	95.0–100.0	100.0 ¹	—
1/2"	—	—	98.0–100.0	100.0 ¹
3/8"	60.0–80.0	70.0–85.0	85.0–100.0	98.0–100.0
#4	40.0–60.0	43.0–63.0	50.0–70.0	70.0–90.0
#8	29.0–43.0	32.0–44.0	35.0–46.0	38.0–48.0
#30	13.0–28.0	14.0–28.0	15.0–29.0	12.0–27.0
#50	6.0–20.0	7.0–21.0	7.0–20.0	6.0–19.0
#200	2.0–7.0	2.0–7.0	2.0–7.0	2.0–7.0
Design (VMA), % Min				
—	13.0	14.0	15.0	16.0
Production (Plant-Produced) (VMA), % Min				
—	12.5	13.5	14.5	15.5

1. Defined as Max sieve size. No tolerance allowed.

Table 9
Laboratory Mixture Design Properties

Mixture Property	Test Method	Requirement
Target laboratory-molded density, %	Tex-207-F	96.0
Design gyrations (N _{design})	Tex-241-F	50 ¹
Indirect tensile strength (dry), psi	Tex-226-F	85–200 ²
Boil test ³	Tex-530-C	—

1. Adjust within a range of 35–100 gyrations when shown on the plans, in accordance with the specification, or when mutually agreed between the Engineer and Contractor.
2. The Engineer may allow the indirect tensile test strength to exceed 200 psi if the corresponding Hamburg wheel rut depth is >2.5 mm and <12.5 mm.
3. When shown on the plans. Used to establish baseline for comparison to production results.

Table 10
Hamburg Wheel Test Requirements

High-Temperature Binder Grade	Test Method	Min # of Passes at 12.5-mm ¹ Rut Depth, Tested at 50°C
PG 64 or lower		10,000 ²
PG 70	Tex-242-F	15,000 ³
PG 76 or higher		20,000

1. The Hamburg wheel test will have a minimum rut depth of 2.5 mm.
2. May be decreased to at least 5,000 passes when shown on the plans.
3. May be decreased to at least 10,000 passes when shown on the plans.

4.4.2.

Job-Mix Formula Approval. The JMF is the combined aggregate gradation, N_{design} level, and target asphalt percentage used to establish target values for hot-mix production. JMF1 is the original laboratory mixture design used to produce the trial batch. When WMA is used, JMF1 may be designed and submitted to the Engineer without including the WMA additive, foaming process, or compaction aid. When WMA or a compaction aid is used, document the additive or process used and recommended rate in the JMF1 submittal. The Engineer and the Contractor will verify JMF1 based on plant-produced mixture from the trial batch, unless otherwise approved. The Engineer may accept an existing mixture design previously used on a Department project and may waive the trial batch to verify JMF1. The Department may require the Contractor to reimburse the Department for verification tests if more than two trial batches per design are required.

4.4.2.1. **Contractor's Responsibilities.**

4.4.2.1.1. **Providing Superpave Gyrotary Compactor.** Provide an SGC in accordance with Item 504, "Field Office and Laboratory," and make the SGC available to the Engineer for use in molding production samples.

4.4.2.1.2. **Gyrotary Compactor Correlation Factors.** Use [Tex-206-F](#), Part II, to perform a gyrotary compactor correlation when the Engineer uses a different SGC. Apply the correlation factor to all subsequent production test results.

4.4.2.1.3. **Submitting JMF1.** Furnish a mix design report (JMF1) with representative samples of all component materials and request approval to produce the trial batch. Provide approximately 25 lb. of the design mixture if opting to have the Department perform the Hamburg wheel test on the laboratory mixture, and request that the Department perform the test.

4.4.2.1.4. **Supplying Aggregates.** Provide approximately 40 lb. of each aggregate stockpile unless otherwise directed.

4.4.2.1.5. **Supplying Asphalt.** Provide at least 1 gal. of the asphalt material and enough quantities of any additives proposed for use.

4.4.2.1.6. **Ignition Oven Correction Factors.** Notify the Engineer before performing [Tex-236-F](#), Part II. Allow the Engineer to witness the mixing of ignition oven correction factor sample. Determine the aggregate and asphalt correction factors from the ignition oven in accordance with [Tex-236-F](#), Part II.

If the Engineer witnesses the mixing of the ignition oven correction factor samples, provide the Engineer with identically prepared samples of the mixtures before the trial batch production, including all additives (except water), and blank samples used to determine the correction factors for the ignition oven used for QA testing during production.

Correction factors established from a previously approved mixture design may be used for the current mixture design if the mixture design and ignition oven are the same as previously used, unless otherwise directed. Correction factors must be performed every 12 mo.

4.4.2.1.7. **Boil Test.** When shown on the plans, perform the test and retain the tested sample from [Tex-530-C](#) until completion of the project or as directed. Use this sample for comparison purposes during production.

4.4.2.1.8. **Trial Batch Production.** Provide a plant-produced trial batch upon receiving conditional approval of JMF1 and authorization to produce a trial batch. If applicable, include the WMA additive, foaming process, or compaction aid for verification testing of JMF1 and development of JMF2. Produce a trial batch mixture that meets the requirements shown in Tables 4, 5, and 11. The Engineer may accept test results from recent production of the same mixture instead of a new trial batch.

4.4.2.1.9. **Trial Batch Production Equipment.** Use only equipment and materials proposed for use on the project to produce the trial batch.

4.4.2.1.10. **Trial Batch Quantity.** Produce enough quantity of the trial batch to ensure that the mixture meets the specification requirements.

4.4.2.1.11. **Number of Trial Batches.** Produce trial batches as necessary to obtain a mixture that meets the specification requirements.

4.4.2.1.12. **Trial Batch Sampling.** Obtain a representative sample of the trial batch and split it into three equal portions in accordance with [Tex-222-F](#). Label these portions as "Contractor," "Engineer," and "Referee." Deliver samples to the appropriate laboratory as directed.

4.4.2.1.13. **Trial Batch Testing.** Test the trial batch to ensure the mixture produced using the proposed JMF1 meets the mixture requirements shown in Table 11. Ensure the trial batch mixture is also in compliance with the

Hamburg wheel requirement shown in Table 10. Use a Department-approved laboratory listed on the MPL to perform the Hamburg wheel test on the trial batch mixture, or request that the Department perform the Hamburg wheel test. Provide approximately 25 lb. of the trial batch mixture if opting to have the Department perform the Hamburg wheel test, and request that the Department perform the test. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel test results on the trial batch. Provide the Engineer with a copy of the trial batch test results.

4.4.2.1.14. **Development of JMF2.** After the Engineer grants full approval of JMF1, evaluate the trial batch test results, determine the optimum mixture proportions, and submit as JMF2. Adjust the asphalt binder content or gradation to achieve the specified target laboratory-molded density. The asphalt binder content established for JMF2 is not required to be within any tolerance of the optimum asphalt binder content established for JMF1; however, mixture produced using JMF2 must meet the VMA requirements for production shown in Table 8. If the optimum asphalt binder content for JMF2 is more than 0.5% lower than the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform [Tex-226-F](#) on Lot 1 production to confirm the indirect tensile strength does not exceed 200 psi. Verify that JMF2 meets the mixture requirements shown in Table 4 and Table 5.

4.4.2.1.15. **Mixture Production.** Use JMF2 to produce Lot 1 in accordance with Section 341.4.9.3.1.1., "Lot 1 Placement," after receiving approval for JMF2 and a passing Hamburg wheel result on the trial batch from a laboratory listed on the MPL. Once JMF2 is approved, and without receiving the results from the Department's Hamburg wheel test on the trial batch, the Contractor may proceed to Lot 1 production at their own risk.

Notify the Engineer if electing to proceed without Hamburg wheel test results from the trial batch. Note that the Engineer may require up to the entire subplot of any mixture failing the Hamburg wheel test to be removed and replaced at the Contractor's expense.

4.4.2.1.16. **Development of JMF3.** Evaluate the test results from Lot 1, determine the optimum mixture proportions, and submit as JMF3 for use in Lot 2.

4.4.2.1.17. **JMF Adjustments.** If JMF adjustments are necessary to achieve the specified requirements, make the adjustments before beginning a new lot. The adjusted JMF must:

- be provided to the Engineer in writing before the start of a new lot,
- be numbered in sequence to the previous JMF,
- meet the mixture requirements in accordance with Table 4 and Table 5,
- meet the master gradation limits in accordance with Table 8, and
- be within the operational tolerances of JMF2 in accordance with Table 11.

4.4.2.1.18. **Requesting Referee Testing.** Use referee testing, if needed, in accordance with Section 341.4.9.1., "Referee Testing," to resolve testing differences with the Engineer.

Table 11
Operational Tolerances

Description	Test Method	Allowable Difference Between JMF2 and JMF1 Target ¹	Allowable Difference Between Current JMF and JMF2 ²	Allowable Difference Between Contractor and Engineer ³
Individual % retained on #8 sieve and larger	Tex-200-F or Tex-236-F	Must be Within Master Gradation Limits in Table 8	±5.0 ⁴	±5.0
Individual % retained on sieves smaller than #8 and larger than #200			±3.0 ⁴	±3.0
% passing the #200 sieve			±2.0 ⁴	±1.6
Asphalt binder content, %	Tex-236-F	±0.5	±0.3	±0.3
Laboratory-molded density, %	Tex-207-F	±1.0	±1.0	±1.0
In-place air voids, %		—	—	±1.0
Laboratory-molded bulk specific gravity		—	—	±0.020
VMA, %, Min	Tex-204-F	Note ⁵	Note ⁵	—
Theoretical maximum specific (Rice) gravity	Tex-227-F	—	—	±0.020

1. JMF1 is the approved laboratory mixture design used for producing the trial batch. JMF2 is the approved mixture design developed from the trial batch used to produce Lot 1.
2. Current JMF is JMF3 or higher. JMF3 is the approved mixture design used to produce Lot 2.
3. Contractor may request referee testing when values exceed these tolerances.
4. When within these tolerances, mixture production gradations may fall outside the master gradation limits; however, the % passing the #200 will be considered out of tolerance when outside the master gradation limits.
5. Verify that Table 8 requirements are met for VMA.

4.4.2.2. **Engineer's Responsibilities.**

4.4.2.2.1. **Superpave Gyratory Compactor.** The Engineer will use a Department SGC, calibrated in accordance with [Tex-241-F](#), to mold samples for laboratory mixture design verification. For molding trial batch and production specimens, the Engineer will use the Contractor-provided SGC at the field laboratory or provide and use a Department SGC at an alternate location.

4.4.2.2.2. **Conditional Approval of JMF1 and Authorizing Trial Batch.** The Engineer will review and verify conformance with the following information within 2 working days of receipt:

- the Contractor's mix design report (JMF1);
- the Contractor-provided Hamburg wheel test results;
- all required materials including aggregates, asphalt, additives, and recycled materials; and
- the mixture specifications.

The Engineer will grant the Contractor conditional approval of JMF1 if the information provided on the paper copy of JMF1 indicates that the Contractor's mixture design meets the specifications. When the Contractor does not provide Hamburg wheel test results with laboratory mixture design, 10 working days are allowed for conditional approval of JMF1. The Engineer will base full approval of JMF1 on the test results on mixture from the trial batch.

Unless waived, the Engineer will determine the Micro-Deval abrasion loss in accordance with Section 341.2.1.1.2., "Micro-Deval Abrasion." If the Engineer's test results are pending after 2 working days, conditional approval of JMF1 will still be granted within 2 working days of receiving JMF1. When the Engineer's test results become available, they will be used for specification compliance.

The Contractor is authorized to produce a trial batch after the Engineer grants conditional approval of JMF1.

4.4.2.2.3. **Hamburg Wheel Testing of JMF1.** If the Contractor requests the option to have the Department perform the Hamburg wheel test on the laboratory mixture, the Engineer will mold samples in accordance with [Tex-242-F](#) to verify compliance with the Hamburg wheel test requirement shown in Table 10. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel test results on the laboratory mixture design.

4.4.2.2.4. **Ignition Oven Correction Factors.** The Engineer will determine ignition oven correction factors by one of the following options.

- Witness the mixing of ignition oven correction factor samples by the Contractor in accordance with [Tex-236-F](#), Part III. The Engineer will use the identically prepared samples provided by the Contractor to determine the aggregate and asphalt correction factors for the ignition oven in accordance with [Tex-236-F](#), Part II.
- If the Engineer does not witness the mixing of ignition oven correction factor samples, the Engineer will prepare the samples to determine the aggregate and asphalt correction factors for the ignition oven in accordance with [Tex-236-F](#), Part II. Notify the Contractor before performing [Tex-236-F](#), Part II. Allow the Contractor to witness the Engineer performing [Tex-236-F](#), Part II.

Correction factors must be performed every 12 mo. to be used for QA testing during production.

4.4.2.2.5.

Testing the Trial Batch. Within 1 full working day, the Engineer will sample and test the trial batch to ensure that the mixture meets the requirements shown in Table 11. If the Contractor requests the option to have the Department perform the Hamburg wheel test on the trial batch mixture, the Engineer will mold samples in accordance with [Tex-242-F](#) to verify compliance with the Hamburg wheel test requirement shown in Table 10.

The Engineer will have the option to perform the following tests on the trial batch.

- [Tex-226-F](#), to verify that the indirect tensile strength meets the requirement shown in Table 9.
- [Tex-530-C](#), to retain and use for comparison purposes during production.

4.4.2.2.6.

Full Approval of JMF1. The Engineer will grant full approval of JMF1 and authorize the Contractor to proceed with developing JMF2 if the Engineer's results for the trial batch meet the requirements shown in Tables 8, 9, and 10. The Engineer will notify the Contractor that an additional trial batch is required if the trial batch does not meet these requirements.

4.4.2.2.7.

Approval of JMF2. The Engineer will approve JMF2 within 1 working day if the mixture meets the requirements shown in Table 5 and Table 8. The asphalt binder content established for JMF2 is not required to be within any tolerance of the optimum asphalt binder content established for JMF1; however, mixture produced using JMF2 must meet the VMA requirements shown in Table 8. If the optimum asphalt binder content for JMF2 is more than 0.5% lower than the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform [Tex-226-F](#) on Lot 1 production to confirm the indirect tensile strength does not exceed 200 psi.

4.4.2.2.8.

Approval of Lot 1 Production. The Engineer will authorize the Contractor to proceed with JMF2 for Lot 1 production after a passing Hamburg wheel test result on the trial batch is achieved from a laboratory listed on the MPL. The Contractor may proceed at their own risk with Lot 1 production without the results from the Hamburg wheel test on the trial batch.

If the Department-approved laboratory's sample from the trial batch fails the Hamburg wheel test, the Engineer will suspend production until further Hamburg wheel tests meet the specified values. The Engineer may require up to the entire subplot of any mixture failing the Hamburg wheel test be removed and replaced at the Contractor's expense.

4.4.2.2.9.

Approval of JMF3 and Subsequent JMF Changes. JMF3 and subsequent JMF changes are approved if they meet the mixture requirements shown in Table 4 and Table 5, and the master gradation limits shown in Table 8, and they are within the operational tolerances of JMF2 shown in Table 11. The addition of a WMA additive to facilitate mixing or as a compaction aid does not require a new laboratory mixture design or trial batch. Current JMF changes that exceed the operational tolerances of JMF2 in accordance with Table 11 may require a new laboratory mixture design, trial batch, or both.

4.5.

Production Operations. Perform a new trial batch when the plant or plant location is changed. All source changes for asphalt will require a passing Hamburg wheel test result from a laboratory listed on the MPL. The Contractor may proceed at their own risk with Lot 1 production without the results from the Hamburg wheel test on the trial batch. All aggregate source changes will require a new laboratory mixture design and

trial batch. Take corrective action and receive approval to proceed after any production suspension for noncompliance with the specification. Submit a new mix design and perform a new trial batch when the asphalt binder content of:

- any RAP stockpile used in the mix is more than 0.5% higher than the value shown in the mixture design report, or
- RAS stockpile used in the mix is more than 2.0% higher than the value shown in the mixture design report.

4.5.1. **Storage and Heating of Materials.** Do not heat the asphalt binder above the temperatures specified in Item 300, or outside the manufacturer's recommended values. Provide the Engineer with daily records of asphalt binder and HMA discharge temperatures (in legible and discernible increments) in accordance with Item 320, unless otherwise directed. Do not store mixture for a period long enough to affect the quality of the mixture, nor in any case longer than 12 hr. unless otherwise approved.

4.5.2. **Mixing and Discharge of Materials.** Notify the Engineer of the target discharge temperature and produce the mixture within 25°F of the target. Monitor the temperature of the material in the truck before shipping to ensure that it does not exceed the maximum production temperatures shown in Table 12. The Department will not pay for or allow placement of any mixture produced above the maximum production temperatures shown in Table 12.

Table 12
Max Production Temperature

High-Temperature Binder Grade ¹	Max Production Temperature (°F)
PG 64	325 ²
PG 70	335 ²
PG 76	345 ²

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.
2. The Max production temperature of WMA is 275°F.

Produce WMA within the target discharge temperature range of 215–275°F when WMA is required. Take corrective action anytime the discharge temperature of the WMA exceeds the target discharge range. The Engineer may suspend production operations if the Contractor's corrective action is not successful at controlling the production temperature within the target discharge range. Note that when WMA is produced, it may be necessary to adjust burners to ensure complete combustion such that no burner fuel residue remains in the mixture.

Control the mixing time and temperature so that substantially all moisture is removed from the mixture before discharging from the plant. Determine the moisture content, if requested, by oven-drying in accordance with [Tex-212-F](#), Part II, and verify that the mixture contains no more than 0.2% of moisture by weight. Obtain the sample immediately after discharging the mixture into the truck and perform the test promptly.

4.6. **Hauling Operations.** Clean all truck beds before use to ensure that mixture is not contaminated. Use a release agent listed on the MPL to coat the inside bed of the truck when necessary. Do not use diesel or any release agent not listed on the MPL.

Use equipment for hauling as defined in Section 341.4.7.3.3., "Hauling Equipment." Use other hauling equipment only when allowed.

4.7. **Placement Operations.** Collect haul tickets from each load of mixture delivered to the project and provide the Department's copy to the Engineer approximately every hour, or as directed. Use a handheld thermal camera or infrared thermometer, when a thermal imaging system is not used, to measure and record the internal temperature of the mixture as discharged from the truck or material transfer device (MTD) before or as the mix enters the paver. Measure the mixture temperature at a minimum frequency of one per ten trucks, or as approved. Include an approximate station number or Global Positioning System coordinates of the

location where the temperature was taken on each ticket. Ensure the mixture meets the temperature requirements shown in Table 12. Calculate the daily yield and cumulative yield for the specified lift and provide to the Engineer at the end of paving operations for each day unless otherwise directed. The Engineer may suspend production if the Contractor fails to produce and provide haul tickets and yield calculations by the end of paving operations for each day.

Prepare the surface by removing raised pavement markers and objectionable material such as moisture, dirt, sand, leaves, and other loose impediments from the surface before placing mixture. Remove vegetation from pavement edges. Place the mixture to meet the typical section requirements and produce a smooth, finished surface with a uniform appearance and texture. Offset longitudinal joints of successive courses of hot mix by at least 6 in. Place mixture so that longitudinal joints on the surface course coincide within 6 in. of lane lines, are not placed in the wheel path, or will not be covered with pavement markings, or as directed. Ensure that all finished surfaces will drain properly. Place the mixture at the rate or thickness shown on the plans. The Engineer will use the guidelines shown in Table 13 to determine the compacted lift thickness of each layer when multiple lifts are required. The thickness determined is based on the rate of 110 lb. per square yard for each inch of pavement, unless otherwise shown on the plans.

Table 13
Compacted Lift Thickness and Required Core Height

Mixture Type	Compacted Lift Thickness Guidelines		Min Untrimmed Core Height Eligible for Testing (in.)
	Min (in.)	Max (in.)	
DG-B	2.50	5.00	1.75
DG-C	2.00	4.00	1.50
DG-D	1.50	3.00	1.25
DG-F	1.25	2.50	1.25

4.7.1. Weather Conditions.

4.7.1.1.

When Using a Thermal Imaging System. Place mixture when the roadway surface is dry and the roadway surface temperature is at or above the temperatures shown in Table 14A, unless otherwise approved or as shown on the plans. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. Provide output data from the thermal imaging system to demonstrate to the Engineer that no recurring severe thermal segregation exists in accordance with Section 341.4.7.3.1.2., "Thermal Imaging System."

Table 14A
Min Pavement Surface Temperatures

High-Temperature Binder Grade ¹	Min Pavement Surface Temperatures (°F)	
	Subsurface Layers	Surface Layers
PG 64	35	40
PG 70	45 ²	50 ²
PG 76	45 ²	50 ²

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.
2. The Contractor may pave at temperatures 10°F lower than these values when a chemical WMA additive is used as a compaction aid in the mixture or when using WMA.

4.7.1.2.

When Not Using a Thermal Imaging System. When using a thermal camera instead of the thermal imaging system, place mixture when the roadway surface temperature is at or above the temperatures shown in Table 14B, unless otherwise approved or as shown on the plans. Measure the roadway surface temperature using a handheld thermal camera or infrared thermometer. The Engineer may allow mixture placement to begin before the roadway surface reaches the required temperature if conditions are such that the roadway surface will reach the required temperature within 2 hr. of beginning placement operations. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer.

Table 14B
Min Pavement Surface Temperatures

High-Temperature Binder Grade ¹	Min Pavement Surface Temperatures (°F)	
	Subsurface Layers	Surface Layers
PG 64	45	50
PG 70	55 ²	60 ²
PG 76	60 ²	60 ²

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.
2. The Contractor may pave at temperatures 10°F lower than these values when a chemical WMA additive is used as a compaction aid in the mixture, when using WMA, or when using a paving process with equipment that eliminates thermal segregation. In such cases, for each subplot and in the presence of the Engineer, use a handheld thermal camera operated in accordance with [Tex-244-F](#) to demonstrate to the satisfaction of the Engineer that the uncompacted mat has no more than 10°F of thermal segregation.

4.7.2. **Tack Coat.**

4.7.2.1.

Application. Clean the surface before placing the tack coat. The Engineer will set the rate between 0.04 and 0.10 gal. of residual asphalt per square yard of surface area. Apply a uniform tack coat at the specified rate unless otherwise directed. Apply the tack coat in a uniform manner to avoid streaks and other irregular patterns. Apply the tack coat to all surfaces that will come in contact with the subsequent HMA placement, unless otherwise directed. Apply adequate overlap of the tack coat in the longitudinal direction during placement of the mat to ensure bond of adjacent mats, unless otherwise directed. Allow adequate time for emulsion to break completely before placing any material. Prevent splattering of tack coat when placed adjacent to curb, gutter, and structures. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use, unless required in conformance with the manufacturer's recommendation for approved TRAIL product use, or when shown on the plans.

4.7.2.2.

Sampling. The Engineer will obtain at least one sample of the tack coat binder per project per source in accordance with [Tex-500-C](#), Part III, and test it to verify compliance with Item 300. The Engineer will notify the Contractor when the sampling will occur and will witness the collection of the sample from the asphalt distributor immediately before use. Label the can with the corresponding lot and subplot numbers, producer, producer facility location, grade, district, date sampled, all applicable bills of lading (if available), and project information, including highway and control-section-job (CSJ) number. For emulsions, the Engineer may test as often as necessary to ensure the residual of the emulsion is greater than or equal to the specification requirement in Item 300.

4.7.3.

Lay-Down Operations. Use the placement temperatures shown in Table 15 to establish the minimum placement temperature of the mixture delivered to the paving operation.

Table 15
Min Mixture Placement Temperature

High-Temperature Binder Grade ¹	Min Placement Temperature ^{2,3,4} (°F)
PG 64	260
PG 70	270
PG 76	280

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.
2. The mixture temperature must be measured using a handheld thermal camera or infrared thermometer immediately before entering MTD or paver.
3. Min placement temperatures may be reduced 20°F if using a chemical WMA additive as a compaction aid, MTD with remixing capabilities, or paver hopper insert with remixing capabilities.
4. When using WMA, the minimum placement temperature is 215°F.

4.7.3.1.

Thermal Profile. Use a handheld thermal camera or a thermal imaging system to obtain a continuous thermal profile in accordance with [Tex-244-F](#). Thermal profiles are not applicable in areas described in Section 341.4.9.3.1.4., “Miscellaneous Areas.”

4.7.3.1.1.

Thermal Segregation.

4.7.3.1.1.1.

Moderate. Any areas that have a temperature differential greater than 25°F, but not exceeding 50°F.

4.7.3.1.1.2.

Severe. Any areas that have a temperature differential greater than 50°F.

4.7.3.1.2.

Thermal Imaging System. Review the output results when a thermal imaging system is used, and provide the automated report described in [Tex-244-F](#) to the Engineer daily, unless otherwise directed. Modify the paving process as necessary to eliminate any recurring (moderate or severe) thermal segregation identified by the thermal imaging system.

The Engineer may suspend paving operations if the Contractor cannot successfully modify the paving process to eliminate recurring severe thermal segregation. Density profiles are not required and not applicable when using a thermal imaging system.

Provide the Engineer with electronic copies of all daily data files that can be used with the thermal imaging system software to generate temperature profile plots daily or as requested.

4.7.3.1.3.

Thermal Camera. Provide the Engineer with the thermal profile of every subplot within 1 working day of the completion of each lot. When requested by the Engineer, provide the thermal images generated using the thermal camera. Report the results of each thermal profile in accordance with Section 341.4.2., “Reporting and Responsibilities.” The Engineer will use a handheld thermal camera to obtain a thermal profile at least once per project.

Take immediate corrective action to eliminate recurring moderate thermal segregation when a handheld thermal camera is used.

Suspend operations and take immediate corrective action to eliminate severe thermal segregation unless otherwise directed. Resume operations when the Engineer determines that subsequent production will meet the requirements of this Section. No production or placement payment adjustments greater than 1.000 will be paid for any subplot that contains severe thermal segregation. Evaluate areas with severe thermal segregation by performing density profiles in accordance with Section 341.4.9.3.3., “Segregation (Density Profile).” Remove and replace the material in any areas that have severe thermal segregation and a failing result for segregation (density profile), unless otherwise directed. The subplot in question may receive a production and placement payment adjustment greater than 1.000, if applicable, when the defective material is successfully removed and replaced.

4.7.3.2. **Windrow Operations.** Operate windrow pickup equipment so that when hot mix is placed in windrows, substantially all the mixture deposited on the roadbed is picked up and loaded into the paver.

4.7.3.3. **Hauling Equipment.** Use belly dump, live-bottom, or end dump trucks to haul and transfer mixture. Except for paving miscellaneous areas, end dump trucks are allowed only when used in conjunction with an MTD with remixing capability or when a thermal imaging system is used, unless otherwise approved.

4.7.3.4. **Screed Heaters.** Turn off screed heaters to prevent overheating of the mat if the paver stops for more than 5 min. The Engineer may evaluate the suspect area in accordance with Section 341.4.9.3.3.5., "Recovered Asphalt Dynamic Shear Rheometer (DSR)," if the screed heater remains on for more than 5 min. while the paver is stopped.

4.8. **Compaction.** Compact the pavement uniformly to contain between 3.8% and 8.5% in-place air voids. Take immediate corrective action to bring the operation within 3.8% and 8.5% when the in-place air voids exceed the range of these tolerances. The Engineer will allow paving to resume when the proposed corrective action is likely to yield between 3.8% and 8.5% in-place air voids.

Obtain cores in areas placed under exempt production, as directed, at locations determined by the Engineer. The Engineer may test these cores and suspend operations or require removal and replacement if the in-place air voids are less than 2.7% or more than 9.9%. Areas defined in Section 341.4.9.3.1.4., "Miscellaneous Areas," are not subject to in-place air void determination.

Furnish the type, size, and number of rollers necessary to ensure desired compaction. Use additional rollers as required to remove any roller marks. Use only water or an approved release agent on rollers, tamps, and other compaction equipment unless otherwise directed.

Use the control strip method shown in [Tex-207-F](#), Part IV, on the first day of production to establish the rolling pattern that will produce the desired in-place air voids, unless otherwise directed.

Use tamps to thoroughly compact the edges of the pavement along curbs, headers, and similar structures and in locations that will not allow thorough compaction using rollers. The Engineer may require rolling using a trench roller on widened areas, in trenches, and in other limited areas.

Complete all compaction operations using breakdown rollers before the pavement temperature drops below 180°F, unless otherwise allowed. Compaction using a pneumatic or light finish roller operated in static mode is allowed for pavement temperatures above 160°F.

Allow the compacted pavement to cool to 160°F or lower before opening to traffic, unless otherwise directed. Sprinkle the finished mat with water or limewater, when directed, to expedite opening the roadway to traffic.

4.9. **Acceptance Plan.** Payment adjustments for the material will be in accordance with Article 341.6., "Payment."

Sample and test the hot mix on a lot and subplot basis. Suspend production if the production payment factor shown in Section 341.6.1., "Production Payment Adjustment Factors," or the placement payment factor shown in Section 341.6.2., "Placement Payment Adjustment Factors," for two consecutive lots is below 1.000. Resume production once test results or other information indicates to the satisfaction of the Engineer that the next material produced or placed will result in payment factors of at least 1.000.

4.9.1. **Referee Testing.** The Materials and Tests Division is the referee laboratory. The Contractor may request referee testing if a "remove and replace" condition is determined based on the Engineer's test results, or if the differences between Contractor and Engineer test results exceed the maximum allowable difference in accordance with Table 11 and the differences cannot be resolved. The Contractor may also request referee testing if the Engineer's test results require suspension of production and the Contractor's test results are within specification limits. Make the request within 5 working days after receiving test results and cores from the Engineer. Referee tests will be performed only on the subplot in question and only for the tests in question. Allow 10 working days from the time the referee laboratory receives the samples for test results to be

reported. The Department may require the Contractor to reimburse the Department for referee tests if more than three referee tests per project are required and the Engineer's test results are closer to the referee test results than the Contractor's test results.

The Materials and Tests Division will determine the laboratory-molded density based on the molded specific gravity and the maximum theoretical specific gravity of the referee sample. The in-place air voids will be determined based on the bulk specific gravity of the cores, as determined by the referee laboratory, and the Engineer's average maximum theoretical specific gravity for the lot. Except for "remove and replace" conditions, referee test results are final and will establish payment adjustment factors for the subplot in question. The Contractor may decline referee testing and accept the Engineer's test results when the placement payment adjustment factor for any subplot results in a "remove and replace" condition. Placement sublots subject to be removed and replaced will be further evaluated in accordance with Section 341.6.2.2., "Placement Sublots Subject to Removal and Replacement."

4.9.2. **Production Acceptance.**

4.9.2.1. **Production Lot.** A production lot consists of four equal sublots. The default quantity for Lot 1 is 1,000 ton; however, when requested by the Contractor, the Engineer may increase the quantity for Lot 1 to no more than 4,000 ton. The Engineer will select subsequent lot sizes based on the anticipated daily production such that approximately three–four sublots are produced each day. The lot size will be between 1,000 ton and 4,000 ton. The Engineer may change the lot size before the Contractor begins any lot.

If the optimum asphalt binder content for JMF2 is more than 0.5% lower than the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform [Tex-226-F](#) on Lot 1 to confirm the indirect tensile strength does not exceed 200 psi. Take corrective action to bring the mixture within specification compliance if the indirect tensile strength exceeds 200 psi, unless otherwise directed.

4.9.2.1.1. **Incomplete Production Lots.** If a lot is begun but cannot be completed, such as on the last day of production or in other circumstances deemed appropriate, the Engineer may close the lot. Adjust the payment for the incomplete lot in accordance with Section 341.6.1., "Production Payment Adjustment Factors." Close all lots within 5 working days unless otherwise allowed.

4.9.2.2. **Production Sampling.**

4.9.2.2.1. **Mixture Sampling.** The Engineer will perform or witness the sampling of production sublots from trucks at the plant in accordance with [Tex-222-F](#). The sampler will split each sample into three equal portions in accordance with [Tex-200-F](#) and label these portions as "Contractor," "Engineer," and "Referee." The Engineer will perform or witness the sample splitting and take immediate possession of the samples labeled "Engineer" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" until the Department's testing is completed.

4.9.2.2.1.1. **Random Sample.** At the beginning of the project, the Engineer will select random numbers for all production sublots. Determine sample locations in accordance with [Tex-225-F](#). Take one sample for each subplot at the randomly selected location. The Engineer will perform or witness the sampling of production sublots.

4.9.2.2.1.2. **Blind Sample.** For one subplot per lot, the Engineer will sample, split, and test a "blind" production sample instead of the random sample collected by the Contractor. The location of the Engineer's "blind" sample will not be disclosed to the Contractor before sampling. The Engineer's "blind" sample may be randomly selected in accordance with [Tex-225-F](#) for any subplot or selected at the discretion of the Engineer. The Engineer may sample and test an additional blind sample when the random sampling process does not result in obtaining a sample.

For one subplot per lot, the Contractor must obtain from the Engineer a "blind" production sample collected by the Engineer. If desired, the Contractor may witness the collection of blind samples. Test either the "blind" or the random sample; however, referee testing for the subplot (if applicable) will be based on a comparison of results from the "blind" sample.

4.9.2.2.2. **Asphalt Binder Sampling.** The Engineer will witness the Contractor obtain a 1-qt. sample of the asphalt binder for each lot of mixture produced. The Contractor will notify the Engineer when the sampling will occur. Obtain the sample at approximately the same time the mixture random sample is obtained. Sample from a port located immediately upstream from the mixing drum or pug mill and upstream from the introduction of any additives in accordance with [Tex-500-C](#), Part II. Label the can with the corresponding lot and subplot numbers, producer name, producer facility, grade, District, date sampled, all applicable bills of lading (if available), and project information, including highway and CSJ number. The Engineer will retain these samples for 1 yr. The Engineer may also obtain independent samples. If obtaining an independent asphalt binder sample and upon request of the Contractor, the Engineer will split a sample of the asphalt binder with the Contractor.

At least once per project, the Engineer will collect split samples of each binder grade and source used. The Engineer will submit one split sample to the Materials and Tests Division to verify compliance with Item 300, and will retain the other split sample for 1 yr.

4.9.2.3. **Production Testing.** The Contractor and Engineer must perform production tests shown in Table 16. The Contractor has the option to verify the Engineer's test results on split samples provided by the Engineer. Determine compliance with operational tolerances shown in Table 11 for all sublots.

Take immediate corrective action if the Engineer's laboratory-molded density on any subplot is less than 95.0% or greater than 97.0% to bring the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

The Engineer may allow alternate methods for determining the asphalt binder content and aggregate gradation if the aggregate mineralogy is such that [Tex-236-F](#), Part I does not yield reliable results. Provide evidence that results from [Tex-236-F](#), Part I are not reliable before requesting permission to use an alternate method unless otherwise directed. Use the applicable test procedure as directed if an alternate test method is allowed.

Table 16
Production and Placement Testing Frequency

Description	Test Method	Min Contractor Testing Frequency	Min Engineer Testing Frequency
Individual % retained on #8 sieve and larger	Tex-200-F or Tex-236-F	1 per sublot	1 per 12 sublots ¹
Individual % retained on sieves smaller than #8 and larger than #200			
% passing #200 sieve			
Laboratory-molded density	Tex-207-F	–	1 per sublot ¹
Laboratory-molded bulk specific gravity			
In-place air voids			
VMA	Tex-204-F		
Segregation (density profile)	Tex-207-F , Part V	1 per sublot ²	1 per project
Longitudinal joint density	Tex-207-F , Part VII	1 per sublot ³	1 per project
Moisture content	Tex-212-F , Part II	When directed	1 per project
Theoretical maximum specific (Rice) gravity	Tex-227-F	–	1 per sublot ¹
Asphalt binder content	Tex-236-F , Part I	1 per sublot	1 per lot ¹
Thermal profile	Tex-244-F	1 per sublot ²	1 per project
Hamburg wheel test	Tex-242-F	–	
Deleterious in RAS ⁴	Tex-217-F , Part III	–	
Asphalt binder sampling and testing ^{4,5}	Tex-500-C , Part II	–	
Tack coat sampling and testing	Tex-500-C , Part III	–	
Boil test ⁶	Tex-530-C	1 per lot	
Shear bond strength test ⁷	Tex-249-F	–	

1. For production defined in Section 341.4.9.4., “Exempt Production,” the Engineer will perform one test per day if 100 ton or more is produced. For exempt production, no testing is required when < 100 ton is produced.
2. To be performed in the presence of the Engineer when not using the thermal imaging system, unless otherwise approved.
3. To be performed in the presence of the Engineer.
4. Testing performed by the Materials and Tests Division or designated laboratory.
5. Sampling performed by the Contractor. The Engineer will witness sampling and retain the samples for 1 yr.
6. When shown on the plans.
7. Testing performed by the Materials and Tests Division or District for informational purposes on a sample obtained by the Contractor within the first four lots of the project.

4.9.2.4.

Operational Tolerances. Control the production process within the operational tolerances shown in Table 11. When production is suspended, the Engineer will allow production to resume when test results or other information indicates the next mixture produced will be within the operational tolerances.

4.9.2.4.1.

Gradation. Suspend operation and take corrective action if any aggregate is retained on the maximum sieve size shown in Table 8. A subplot is defined as out of tolerance if either the Engineer's or the Contractor's test results are out of operational tolerance. Suspend production when test results for gradation exceed the operational tolerances shown in Table 11 for three consecutive sublots on the same sieve or four consecutive sublots on any sieve, unless otherwise directed. The consecutive sublots may be from more than one lot.

4.9.2.4.2.

Asphalt Binder Content. A subplot is defined as out of operational tolerance if either the Engineer's or the Contractor's test results exceed the values shown in Table 11. No production or placement payment adjustments greater than 1.000 will be paid for any subplot that is out of operational tolerance for asphalt binder content. Suspend production and shipment of the mixture if the Engineer's or the Contractor's asphalt binder content deviates from the current JMF by more than 0.5% for any subplot.

4.9.2.4.3.

VMA. The Engineer will determine the VMA for every subplot. For sublots when the Engineer does not determine asphalt binder content, the Engineer will use the asphalt binder content results from QC testing performed by the Contractor to determine VMA.

Take immediate corrective action if the VMA value for any subplot is less than the minimum VMA requirement for production shown in Table 8. Suspend production and shipment of the mixture if the Engineer's VMA results on two consecutive sublots are below the minimum VMA requirement for production shown in

Table 8. No production or placement payment adjustments greater than 1.000 will be paid for any subplot that does not meet the minimum VMA requirement for production shown in Table 8 based on the Engineer's VMA determination.

Suspend production and shipment of the mixture if the Engineer's VMA result is more than 0.5% below the minimum VMA requirement for production shown in Table 8. In addition to suspending production, the Engineer may require removal and replacement or may allow the subplot to be left in place without payment.

4.9.2.4.4. **Hamburg Wheel Test.** The Engineer may perform a Hamburg wheel test on plant-produced mixture anytime during production. Suspend production until further Hamburg wheel tests meet the specified values when the production samples fail the Hamburg wheel test criteria shown in Table 10. The Engineer may require up to the entire subplot of any mixture failing the Hamburg wheel test to be removed and replaced at the Contractor's expense.

If the Department-approved laboratory's Hamburg wheel test on plant-produced mixture results in a "remove and replace" condition, the Contractor may request that the Materials and Tests Division determine the final disposition of the material in question by re-testing the failing material.

4.9.2.5. **Individual Loads of Hot Mix.** The Engineer may reject individual truckloads of hot mix. When a load of hot mix is rejected for reasons other than temperature, contamination, or excessive uncoated particles, the Contractor may request that the rejected load be tested. Make this request within 4 hr. of rejection. The Engineer will sample and test the mixture. If test results are within the operational tolerances shown in Table 11, payment will be made for the load. If test results are not within operational tolerances, no payment will be made for the load.

4.9.3. **Placement Acceptance.**

4.9.3.1. **Placement Lot.** A placement lot consists of four placement sublots. A placement subplot consists of the area placed during a production subplot.

4.9.3.1.1. **Lot 1 Placement.** Placement payment adjustments greater than 1.000 for Lot 1 will be in accordance with Section 341.6.2., "Placement Payment Adjustment Factors"; however, no placement adjustment less than 1.000 will be assessed for any subplot placed in Lot 1 when the in-place air voids are greater than or equal to 2.7% and less than or equal to 9.9%. Remove and replace any subplot with in-place air voids less than 2.7% or greater than 9.9%.

4.9.3.1.2. **Incomplete Placement Lots.** An incomplete placement lot consists of the area placed as described in Section 341.4.9.2.1.1., "Incomplete Production Lots," excluding areas defined in Section 341.4.9.3.1.4., "Miscellaneous Areas." Placement sampling is required if the random sample plan for production resulted in a sample being obtained from an incomplete production subplot.

4.9.3.1.3. **Shoulders, Ramps, Etc.** Shoulders, ramps, intersections, acceleration lanes, deceleration lanes, and turn lanes are subject to in-place air void determination and payment adjustments unless shown on the plans as not eligible for in-place air void determination. Intersections may be considered miscellaneous areas when determined by the Engineer.

4.9.3.1.4. **Miscellaneous Areas.** Miscellaneous areas include areas that typically involve significant handwork or discontinuous paving operations, such as temporary detours, driveways, mailbox turnouts, crossovers, gores, spot level-up areas, pavement repair sections less than 300 ft., and other similar areas. Temporary detours are subject to in-place air void determination when shown on the plans. Miscellaneous areas also include level-ups and thin overlays when the layer thickness shown on the plans is less than the minimum untrimmed core height eligible for testing in accordance with Table 13. The specified layer thickness is based on the rate of 110 lb. per square yard for each inch of pavement unless another rate is shown on the plans. When "Level Up" is listed as part of the bid item description, a payment adjustment factor of 1.000 will be assigned for all placement sublots as described in Article 341.6., "Payment." Miscellaneous areas are not eligible for random placement sampling locations. Compact miscellaneous areas in accordance with

Section 341.4.8., "Compaction." Miscellaneous areas are not subject to in-place air void determination, thermal profiles testing, segregation (density profiles), or longitudinal joint density evaluations.

4.9.3.2.

Placement Sampling. The Engineer will select random numbers for all placement sublots at the beginning of the project. The Engineer will provide the Contractor with the placement random numbers only immediately after the subplot is completed. Mark the roadway location at the completion of each subplot and record the station number. Determine one random sample location for each placement subplot in accordance with [Tex-225-F](#). Adjust the random sample location by no more than necessary to achieve a 2-ft. clearance if the location is within 2 ft. of a joint or pavement edge.

Shoulders, ramps, intersections, acceleration lanes, deceleration lanes, and turn lanes are always eligible for selection as a random sample location; however, if a random sample location falls on one of these areas and the area is shown on the plans as not subject to in-place air void determination, cores will not be taken for the subplot and a 1.000 pay factor will be assigned to that subplot.

Provide the equipment and means to obtain and trim roadway cores onsite. Onsite is defined as in close proximity to where the cores are taken. Obtain the cores within 1 working day of the time the placement subplot is completed, unless otherwise approved. Obtain two 6-in. diameter cores side-by-side from within 1 ft. of the random location provided for the placement subplot. Mark the cores for identification, measure and record the untrimmed core height, and provide the information to the Engineer. The Engineer will witness the coring operation and measurement of the core thickness. Visually inspect each core and verify that the current paving layer is bonded to the underlying layer. Take corrective action if an adequate bond does not exist between the current and underlying layer to ensure that an adequate bond will be achieved during subsequent placement operations.

Trim the cores immediately after obtaining them from the roadway in accordance with [Tex-251-F](#) if the core heights meet the minimum untrimmed value in accordance with Table 13. Trim the cores onsite in the presence of the Engineer. Use a permanent marker or paint pen to record the lot and subplot numbers on each core, as well as the designation as Core A or Core B. The Engineer may require additional information to be marked on the core and may choose to sign or initial the core. The Engineer will take custody of the cores immediately after witnessing the trimming of the cores and will retain custody of the cores until the Department's testing is completed. Before turning the trimmed cores over to the Engineer, the Contractor may wrap the trimmed cores or secure them in a manner that will reduce the risk of possible damage occurring during transport by the Engineer. After testing, the Engineer will return the cores to the Contractor.

The Engineer may have the cores transported back to the Department's laboratory at the HMA plant via the Contractor's haul truck or other designated vehicle. In such cases where the cores will be out of the Engineer's possession during transport, the Engineer will use Department-provided security bags and the Protocol for Roadway Core Custody located on the Department's website to provide a secure means and process that protect the integrity of the cores during transport.

Decide whether to include the pair of cores in the air void determination for that subplot if the core height before trimming is less than the minimum untrimmed value shown in Table 13. Trim the cores in accordance with [Tex-251-F](#) before delivering to the Engineer if electing to have the cores included in the air void determination. If electing to not have the cores included in air void determination, inform the Engineer of the decision, and deliver untrimmed cores to the Engineer. The placement pay factor for the subplot will be 1.000 if cores will not be included in air void determination.

Instead of the Contractor trimming the cores onsite immediately after coring, the Engineer and the Contractor may mutually agree to have the trimming operations performed at an alternate location, such as a field laboratory or other similar location. In such cases, the Engineer will take possession of the cores immediately after they are obtained from the roadway and will retain custody of the cores until testing is completed. Either the Department or Contractor representative may perform trimming of the cores. The Engineer will witness all trimming operations in cases where the Contractor representative performs the trimming operation.

Dry the core holes and tack the sides and bottom immediately after obtaining the cores. Fill the hole with the same type of mixture and properly compact the mixture. Repair core holes using other methods when approved.

4.9.3.3. **Placement Testing.** Perform placement tests in accordance with Table 16. After the Engineer returns the cores, the Contractor may test the cores to verify the Engineer's test results for in-place air voids. The allowable differences between the Contractor's and Engineer's test results are shown in Table 11.

4.9.3.3.1. **In-Place Air Voids.** The Engineer will measure in-place air voids in accordance with [Tex-207-F](#) and [Tex-227-F](#). Before drying to a constant weight, cores may be pre-dried using a CoreDry or similar vacuum device to remove excess moisture. The Engineer will average the values obtained for all sublots in the production lot to determine the theoretical maximum specific gravity. The Engineer will use the average air void content for in-place air voids.

The Engineer will use the vacuum method to seal the core if required in accordance with [Tex-207-F](#). The Engineer will use the test results from the unsealed core to determine the placement payment adjustment factor if the sealed core yields a higher specific gravity than the unsealed core. After determining the in-place air void content, the Engineer will return the cores and provide test results to the Contractor.

4.9.3.3.2. **Informational Shear Bond Strength Testing.** The Engineer will select one random subplot within the first four lots of the project for shear bond strength testing. Obtain full-depth cores in accordance with [Tex-249-F](#) unless the HMA is being placed directly on concrete pavement. Label the cores with lot and subplot numbers and provide to the Engineer. Inspector must use pertinent Department form to document the CSJ number, producer of the tack coat, mix type, and shot rate. The Engineer will ship the cores to the Materials and Tests Division or District laboratory for shear bond strength testing. Results from these tests will not be used for specification compliance.

4.9.3.3.3. **Segregation (Density Profile).** Test for segregation using density profiles in accordance with [Tex-207-F](#), Part V. Density profiles are not required and are not applicable when using a thermal imaging system. Density profiles are not applicable in areas described in Section 341.4.9.3.1.4., "Miscellaneous Areas."

Perform at least one density profile per subplot. Perform additional density profiles when any of the following conditions occur, unless otherwise approved:

- areas that are identified by either the Contractor or the Engineer with severe thermal segregation,
- any visibly segregated areas that exist,
- the paver stops due to lack of material being delivered to the paving operations and the temperature of the uncompacted mat before the initial breakdown rolling is less than the temperatures shown in Table 17.

Table 17
Min Uncompacted Mat Temperature Requiring Segregation Profile¹

High-Temperature Binder Grade ²	Min Temperature of Uncompacted Mat Allowed Before Initial Breakdown Rolling ^{3,4,5} (°F)
PG 64	<250
PG 70	<260
PG 76	<270

1. Applicable only to paver stops that occur due to lack of material being delivered to the paving operations and when not using a thermal imaging system.
2. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.
3. The surface of the uncompacted mat must be measured using a handheld thermal camera or infrared thermometer.
4. Min uncompacted mat temperature requiring a segregation profile may be reduced 20°F if using a chemical WMA additive as a compaction aid, MTD with remixing capabilities, or paver hopper insert with remixing capabilities.
5. When using WMA, the Min uncompacted mat temperature requiring a segregation profile is 215°F.

Provide the Engineer with the density profile of every subplot in the lot within 1 working day of the completion of each lot. Report the results of each density profile in accordance with Section 341.4.2., "Reporting and Responsibilities."

The density profile is considered failing if it exceeds the tolerances shown in Table 18. When a thermal imaging system is not used, the Engineer will measure the density profile at least once per project. The Engineer's density profile results will be used when available. The Engineer may require the Contractor to remove and replace the area in question if the area fails the density profile and has surface irregularities as defined in Section 341.4.9.3.3.6., "Irregularities." The subplot in question may receive a production and placement payment adjustment greater than 1.000, if applicable, when the defective material is successfully removed and replaced.

Investigate density profile failures and take corrective actions during production and placement to eliminate the segregation. Suspend production if two consecutive density profiles fail unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

Table 18
Segregation (Density Profile) Acceptance Criteria

Mixture Type	Max Allowable Density Range (highest to lowest,pcf)	Max Allowable Density Range (average to lowest,pcf)
DG-B	8.0	5.0
DG-C, DG-D, and DG-F	6.0	3.0

4.9.3.3.4. **Longitudinal Joint Density.**

4.9.3.3.4.1.

Informational Tests. Perform joint density evaluations while establishing the rolling pattern and verify that the joint density is no more than 3.0 pcf below the density taken at or near the center of the mat. Adjust the rolling pattern, if needed, to achieve the desired joint density. Perform additional joint density evaluations, at least once per subplot, unless otherwise directed.

4.9.3.3.4.2.

Record Tests. Perform a joint density evaluation for each subplot at each pavement edge that is or will become a longitudinal joint. Joint density evaluations are not applicable in areas described in Section 341.4.9.3.1.4., "Miscellaneous Areas." Determine the joint density in accordance with [Tex-207-F](#), Part VII. Record the joint density information and submit results on Department forms to the Engineer. The evaluation is considered failing if the joint density is more than 3.0 pcf below the density taken at the core random sample location and the correlated joint density is less than 90.0%. The Engineer will make independent joint density verification at least once per project and may make independent joint density

verifications at the random sample locations. The Engineer's joint density test results will be used when available.

Provide the Engineer with the joint density of every subplot in the lot within 1 working day of the completion of each lot. Report the results of each joint density in accordance with Section 341.4.2., "Reporting and Responsibilities."

Investigate joint density failures and take corrective actions during production and placement to improve the joint density. Suspend production if the evaluations on two consecutive sublots fail, unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

4.9.3.3.5.

Recovered Asphalt Dynamic Shear Rheometer (DSR). The Engineer may take production samples or cores from suspect areas of the project to determine recovered asphalt properties. Asphalt binders with an aging ratio greater than 3.5 do not meet the requirements for recovered asphalt properties and may be deemed defective when tested and evaluated by the Materials and Tests Division. The aging ratio is the DSR value of the extracted binder divided by the DSR value of the original unaged binder. Obtain DSR values in accordance with AASHTO T 315 at the specified high-temperature PG of the asphalt. The Engineer may require removal and replacement of the defective material at the Contractor's expense. The asphalt binder will be recovered for testing from production samples or cores in accordance with [Tex-211-F](#).

4.9.3.3.6.

Irregularities. Identify and correct irregularities, including segregation, rutting, raveling, flushing, fat spots, mat slippage, irregular color, irregular texture, roller marks, tears, gouges, streaks, uncoated aggregate particles, or broken aggregate particles. The Engineer may also identify irregularities, and in such cases, the Engineer will promptly notify the Contractor. If the Engineer determines that the irregularity will adversely affect pavement performance, the Engineer may require the Contractor to remove and replace (at the Contractor's expense) areas of the pavement that contain irregularities. The Engineer may also require the Contractor to remove and replace (at the Contractor's expense) areas where the mixture does not bond to the existing pavement.

If irregularities are detected, the Engineer may require the Contractor to immediately suspend operations or may allow the Contractor to continue operations for no more than 1 day while the Contractor is taking appropriate corrective action.

4.9.4.

Exempt Production. The mixture may be deemed as exempt production when mutually agreed upon between the Engineer and the Contractor, or when shown on the plans. Exempt production may be used for the following conditions.

- Anticipated daily production is less than 500 ton.
- Total production for the project is less than 5,000 ton.
- Pavement repair sections are equal to or greater than 300 ft. For pavement repair sections less than 300 ft., refer to Section 341.4.9.3.1.4., "Miscellaneous Areas."

Exempt production is not eligible for referee testing. For exempt production, the Contractor is relieved of all production and placement QC and QA sampling and testing requirements, except for coring operations when required by the Engineer. When mutually agreed upon between the Engineer and the Contractor, production sampling will be allowed at the point of delivery. When 100 ton or more per day is produced, the Engineer must perform acceptance tests for production and placement in accordance with Table 16. If the specification requirements listed below are met, the production and placement pay factors are 1.000:

- produce, haul, place, and compact the mixture in compliance with the specification and as directed;
- control mixture production to yield a laboratory-molded density that is within $\pm 1.0\%$ of the target laboratory-molded density as tested by the Engineer;
- compact the mixture in accordance with Section 341.4.8., "Compaction;"
- when a thermal imaging system is not used, the Engineer may perform segregation (density profiles) and thermal profiles in accordance with the specification; and
- all other specification requirements.

4.9.5. **Ride Quality.** Measure ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

5. MEASUREMENT

5.1. **Dense-Graded HMA.** Hot mix will be measured by the ton of composite hot mix, which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520, "Weighing and Measuring Equipment."

5.2. **Tack Coat.** Tack coat will be measured at the applied temperature by strapping the tank before and after road application and determining the net volume in gallons from the calibrated distributor. The Engineer will witness all strapping operations for volume determination. All tack, including emulsions, will be measured by the gallon applied.

The Engineer may allow the use of a metering device to determine asphalt volume used and application rate if the device is accurate within 1.5% of the strapped volume.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under Section 341.5.1., "Dense-Graded HMA," will be paid for at the unit price bid for "Dense-Graded Hot-Mix Asphalt" of the mixture type, SAC, and binder specified. These prices are full compensation for surface preparation, materials, placement, equipment, labor, tools, and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under Section 341.5.2., "Tack Coat," will be paid for at the unit price bid for "Tack Coat" of the tack coat provided. These prices are full compensation for materials, placement, equipment, labor, tools, and incidentals. Payment adjustments will be applied as determined in accordance with this Item; however, a payment adjustment factor of 1.000 will be assigned for all placement sublots for level-ups only when "Level Up" is listed as part of the bid item description. A payment adjustment factor of 1.000 will be assigned to all production and placement sublots when "Exempt" is listed as part of the bid item description, and all testing requirements are met.

Payment for each subplot, including applicable payment adjustments greater than 1.000, will be paid only for sublots when the Contractor supplies the Engineer with the required documentation for production and placement QC and QA, thermal profiles, segregation density profiles, and longitudinal joint densities in accordance with Section 341.4.2., "Reporting and Responsibilities." When a thermal imaging system is used, documentation is not required for segregation density profiles on individual sublots; however, the thermal imaging system automated reports described in [Tex-244-F](#) are required.

Trial batches will not be paid for unless they are included in pavement work approved by the Department.

Payment adjustment for ride quality will be determined in accordance with Item 585.

6.1. **Production Payment Adjustment Factors.** The production payment adjustment factor is based on the laboratory-molded density using the Engineer's test results. The bulk specific gravities of the samples from each subplot will be divided by the Engineer's maximum theoretical specific gravity for the subplot. The individual sample densities for the subplot will be averaged to determine the production payment adjustment factor in accordance with Table 19 for each subplot, using the deviation from the target laboratory-molded density in accordance with Table 9. The production payment adjustment factor for completed lots will be the average of the payment adjustment factors for the four sublots sampled within that lot.

Table 19
Production Payment Adjustment Factors for Laboratory-Molded Density¹

Absolute Deviation from Target Laboratory-Molded Density	Production Payment Adjustment Factor (Target Laboratory-Molded Density)
0.0	1.050
0.1	1.050
0.2	1.050
0.3	1.044
0.4	1.038
0.5	1.031
0.6	1.025
0.7	1.019
0.8	1.013
0.9	1.006
1.0	1.000
1.1	0.965
1.2	0.930
1.3	0.895
1.4	0.860
1.5	0.825
1.6	0.790
1.7	0.755
1.8	0.720
>1.8	Remove and replace

1. If the Engineer's laboratory-molded density on any subplot is <95.0% or >97.0%, take immediate corrective action to bring the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

6.1.1. **Payment for Incomplete Production Lots.** Production payment adjustments for incomplete lots, described under Section 341.4.9.2.1.1., "Incomplete Production Lots," will be calculated using the average production payment factors from all sublots sampled.

A production payment factor of 1.000 will be assigned to any lot when the random sampling plan did not result in collection of any samples within the first subplot.

6.1.2. **Production Sublots Subject to Removal and Replacement.** If after referee testing the laboratory-molded density for any subplot results in a "remove and replace" condition as shown in Table 19, the Engineer may require removal and replacement or may allow the subplot to be left in place without payment. The Engineer may also accept the subplot in accordance with Section 5.3.1., "Acceptance of Defective or Unauthorized Work." Replacement material meeting the requirements of this Item will be paid for in accordance with this Section.

6.2. **Placement Payment Adjustment Factors.** The placement payment adjustment factor is based on in-place air voids using the Engineer's test results. The bulk specific gravities of the cores from each subplot will be divided by the Engineer's average maximum theoretical specific gravity for the lot. The individual core densities for the subplot will be averaged to determine the placement payment adjustment factor in accordance with Table 20 for each subplot that requires in-place air void measurement. A placement payment adjustment factor of 1.000 will be assigned to the entire subplot when the random sample location falls in an area shown on the plans as not subject to in-place air void determination. A placement payment adjustment factor of 1.000 will be assigned to quantities placed in areas described in Section 341.4.9.3.1.4., "Miscellaneous Areas." The placement payment adjustment factor for completed lots will be the average of the placement payment adjustment factors for up to four sublots within that lot.

Table 20
Placement Payment Adjustment Factors for In-Place Air Voids

In-Place Air Voids	Placement Pay Adjustment Factor	In-Place Air Voids	Placement Payment Adjustment Factor
<2.7	Remove and replace	6.4	1.042
2.7	0.710	6.5	1.040
2.8	0.740	6.6	1.038
2.9	0.770	6.7	1.036
3.0	0.800	6.8	1.034
3.1	0.830	6.9	1.032
3.2	0.860	7.0	1.030
3.3	0.890	7.1	1.028
3.4	0.920	7.2	1.026
3.5	0.950	7.3	1.024
3.6	0.980	7.4	1.022
3.7	0.998	7.5	1.020
3.8	1.002	7.6	1.018
3.9	1.006	7.7	1.016
4.0	1.010	7.8	1.014
4.1	1.014	7.9	1.012
4.2	1.018	8.0	1.010
4.3	1.022	8.1	1.008
4.4	1.026	8.2	1.006
4.5	1.030	8.3	1.004
4.6	1.034	8.4	1.002
4.7	1.038	8.5	1.000
4.8	1.042	8.6	0.998
4.9	1.046	8.7	0.996
5.0	1.050	8.8	0.994
5.1	1.050	8.9	0.992
5.2	1.050	9.0	0.990
5.3	1.050	9.1	0.960
5.4	1.050	9.2	0.930
5.5	1.050	9.3	0.900
5.6	1.050	9.4	0.870
5.7	1.050	9.5	0.840
5.8	1.050	9.6	0.810
5.9	1.050	9.7	0.780
6.0	1.050	9.8	0.750
6.1	1.048	9.9	0.720
6.2	1.046	>9.9	Remove and replace
6.3	1.044	—	—

6.2.1.

Payment for Incomplete Placement Lots. Payment adjustments for incomplete placement lots described under Section 341.4.9.3.1.2., “Incomplete Placement Lots,” will be calculated using the average of the placement payment factors from all sublots sampled and sublots where the random location falls in an area shown on the plans as not eligible for in-place air void determination.

If the random sampling plan results in production samples, but not in placement samples, the random core location and placement adjustment factor for the subplot will be determined by applying the placement random number to the length of the subplot placed.

If the random sampling plan results in placement samples, but not in production samples, no placement adjustment factor will apply for that subplot placed.

A placement payment adjustment factor of 1.000 will be assigned to any lot when the random sampling plan did not result in collection of any production samples.

6.2.2.

Placement Sublots Subject to Removal and Replacement. If after referee testing the placement payment adjustment factor for any subplot results in a “remove and replace” condition as shown in Table 20, the

Engineer will choose the location of two cores to be taken within 3 ft. of the original failing core location. The Contractor must obtain the cores in the presence of the Engineer. The Engineer will take immediate possession of the untrimmed cores and submit the untrimmed cores to the Materials and Tests Division, where they will be trimmed, if necessary, and tested for bulk specific gravity within 10 working days of receipt.

The bulk specific gravity of each core from each subplot will be divided by the Engineer's average maximum theoretical specific gravity for the lot. The individual core densities for the subplot will be averaged to determine the new payment adjustment factor of the subplot in question. If the new payment adjustment factor is 0.720 or greater, the new payment adjustment factor will apply to that subplot. If the new payment adjustment factor is less than 0.720, no payment will be made for the subplot. Remove and replace the failing subplot, or the Engineer may allow the subplot to be left in place without payment. The Engineer may also accept the subplot in accordance with Section 5.3.1., "Acceptance of Defective or Unauthorized Work." Replacement material meeting the requirements of this Item will be paid for in accordance with this Section.

6.3.

Total Adjusted Pay (TAP) Calculation. TAP will be based on the applicable payment adjustment factors for production and placement for each lot.

$$TAP = (A+B)/2$$

where:

$A = \text{Bid price} \times \text{production lot quantity} \times \text{average payment adjustment factor for the production lot}$

$B = \text{Bid price} \times \text{placement lot quantity} \times \text{average payment adjustment factor for the placement lot} + (\text{bid price} \times \text{quantity placed in miscellaneous areas} \times 1.000)$

Production lot quantity = Quantity actually placed - quantity left in place without payment

Placement lot quantity = Quantity actually placed - quantity left in place without payment - quantity placed in miscellaneous areas

Item 401

Flowable Backfill

1. DESCRIPTION

Furnish and place flowable backfill for trench, hole, or other void.

2. MATERIALS

Use materials from prequalified sources listed on the Department website. Use materials from non-listed sources only when tested and approved before use. Allow 30 calendar days for the Engineer to sample, test, and report results for non-listed sources. Do not combine approved material with unapproved material.

- 2.1. **Cement.** Furnish cement in accordance with [DMS-4600](#), "Hydraulic Cement."
- 2.2. **Fly Ash.** Furnish fly ash in accordance with [DMS-4610](#), "Coal Ash."
- 2.3. **Chemical Admixtures.** Furnish chemical admixtures in accordance with [DMS-4640](#), "Chemical Admixtures for Concrete." Use specialty type admixtures to enhance the flowability, reduce shrinkage, and reduce segregation by maintaining solids in suspension when necessary. Use and proportion all admixtures in conformance with the manufacturer's recommendations.
- 2.4. **Fine Aggregate.** Provide fine aggregate that will stay in suspension in the mortar to the extent required for proper flow and that meets the gradation requirements shown in Table 1.

Table 1
Aggregate Gradation Chart

Sieve Size	Percent Passing
3/4"	100
#200	0-30

Test fine aggregate gradation in accordance with [Tex-401-A](#).

Plasticity index must not exceed six when tested in accordance with [Tex-106-E](#).

- 2.5. **Mixing Water.** Use mixing water in accordance with Item 421, "Hydraulic Cement Concrete."

3. CONSTRUCTION

Submit a construction method and plan, including mix design, for approval. Provide a means of filling the entire void area and be able to demonstrate this has been accomplished. Prevent the movement of any inserted structure from its designated location. Remove and replace or correct the problem if voids are found in the fill or any of the requirements are not met as shown on the plans, without additional cost to the Department.

Furnish a mix meeting the requirements shown in Table 2, unless otherwise shown on the plans.

Table 2
Flowable Fill Mix Design Requirements

Property	Excavatable	Non-Excavatable	Test Method
28-day compressive strength ¹ , psi	80–200	> 200	ASTM D4832
Consistency ² , Min diameter, in.		8	ASTM D6103
Unit weight, pcf	90–125	100 to 145	ASTM D6023
Air content, %	10–30	5 to 15	ASTM D6023

1. Average of two specimens.
2. Mixture must not segregate.

Mix the flowable fill using a central-mixed concrete plant, ready-mix concrete truck, pug mill, or other approved method.

Furnish all labor, equipment, tools, containers, and molds required for sampling, making, transporting, curing, removing, and disposing of test specimens. Furnish test molds meeting the requirements of [Tex-447-A](#). Transport, strip, and cure the test specimens as scheduled at the designated location. Cure test specimens in accordance with [Tex-447-A](#). The Engineer will sample, make, and test all specimens. Dispose of used, broken specimens in an approved location and manner. The frequency of job-control testing will be at the direction of the Engineer.

4. MEASUREMENT

This Item will be measured by the cubic yard of material placed. Measurement will not include additional volume caused by slips, slides, or cave-ins resulting from the Contractor's operations.

5. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Flowable Backfill." This price is full compensation for furnishing, hauling, and placing materials and for equipment, tools, labor, and incidentals.

Item 421

Hydraulic Cement Concrete

1. DESCRIPTION

Furnish hydraulic cement concrete for concrete pavements, concrete structures, and other concrete construction.

2. MATERIALS

Use materials from prequalified sources listed on the Department website. Provide aggregates from sources listed in the Department's Concrete Rated Source Quality Catalog (CRSQC). Use materials from non-listed sources only when tested and approved before use. Allow 30 calendar days for the Engineer to sample, test, and report results for non-listed sources. Do not combine approved material with unapproved material.

2.1.

Cement. Furnish cement in accordance with [DMS-4600](#), "Hydraulic Cement."

2.2.

Supplementary Cementitious Materials (SCMs).

- **Coal Ash.** Furnish sources of fly ash, modified fly ash (MFA), harvested coal ash (HCA), and ground bottom ash (GBA) in accordance with [DMS-4610](#), "Coal Ash."
- **Slag Cement.** Furnish slag cement in accordance with [DMS-4620](#), "Slag Cement."
- **Silica Fume.** Furnish silica fume in accordance with [DMS-4630](#), "Silica Fume."
- **Natural Pozzolans.** Furnish natural pozzolans in accordance with [DMS-4635](#), "Natural Pozzolans."

2.3.

Cementitious Material. Cementitious materials are the cement and SCMs used in concrete.

2.4.

Chemical Admixtures. Furnish admixtures in accordance with [DMS-4640](#), "Chemical Admixtures for Concrete."

2.5.

Water. Furnish mixing and curing water that is free of oils, acids, organic matter, or other deleterious substances. Water from municipal supplies approved by the Texas Department of Health will not require testing. Provide test reports showing compliance with Table 1 before use when using water from other sources.

Water that is a blend of concrete wash water and other acceptable water sources, certified by the concrete producer as complying with the requirements shown in Table 1 and Table 2, may be used as mix water. Test the blended water weekly for 4 weeks for compliance with Table 1 and Table 2 or provide previous test results. Then test every month for compliance. Provide water test results upon request.

Do not use mix water that has an adverse effect on the air-entraining agent, on any other chemical admixture, or on strength or time of set of the concrete. Use mixing and curing water free of iron and other impurities that may cause staining or discoloration when using white hydraulic cement.

Table 1
Chemical Limits for Mix Water

Contaminant	Test Method	Max Concentration (ppm or mg/L)
Chloride (Cl) Prestressed concrete Bridge decks & superstructure All other concrete	ASTM C114 ¹	500
		500
		1,000
Sulfate (SO ₄)	ASTM C114 ¹	2,000
Alkalies (Na ₂ O + 0.658K ₂ O)	ASTM C114 ¹	600
Total solids	ASTM C1603	50,000

1. ASTM C114 includes reference and alternative test methods to measure the concentration of chlorides, sulfates, and alkalies in solutions prepared from dissolving cementitious materials. Use the applicable Test Methods in C114 to measure these constituents. The laboratory performing these tests is not required to conform to the method qualification requirements of Test Methods C114. Alternative instrumental and wet chemistry methods not listed in Test Methods C114 that measure the concentration of these chemical species in solution are permitted. When alternative methods are used, the test method used will be included in the report.

Table 2
Acceptance Criteria for Questionable Water Supplies

Property	Test Method	Limits
Compressive strength, Min % control at 7 days	ASTM C31, ASTM C39 ^{1,2}	90
Time of set, deviation from control, h:min.	ASTM C403	From 1:00 early to 1:30 later
1. Base comparisons on fixed proportions and the same volume of test water compared to the control mix using 100% potable water or distilled water.		
2. Base comparisons on sets consisting of at least two standard specimens made from a composite sample.		

2.6.

Aggregate.

2.6.1.

Coarse Aggregate. Provide coarse aggregate consisting of durable particles of gravel, crushed blast furnace slag, recycled crushed hydraulic cement concrete, crushed stone, or combinations that are free of frozen material and injurious amounts of salt, alkali, vegetable matter, or other objectionable material, either free or as an adherent coating. Provide coarse aggregate of uniform quality throughout.

Provide coarse aggregate with the requirements shown in Table 3 unless otherwise shown on the plans.

Table 3
Coarse Aggregate Requirements

Description	Test Method	Limit
Weight of clay lumps, % Max	Tex-413-A	0.25
Weight of shale, % Max		1.0
Weight of laminate and friable particle, % Max		5.0
L.A. abrasion wear, % Max	Tex-410-A	40
5-cycle magnesium sulfate soundness, ^{1,2} non-air-entrained concrete, % Max		25
5-cycle magnesium sulfate soundness, ^{1,3} air-entrained concrete, % Max		18
Loss by decantation, % Max	Tex-406-A	1.5

1. Recycled crushed hydraulic cement concrete is not subject to 5-cycle magnesium sulfate soundness requirements.
2. Allowed when air-entrained concrete is used at the Contractor's option.
3. Only when air-entrained concrete is required by the plans.

Increase the loss by decantation limit to 3.0% for all classes of concrete and 5.0% for Class A, B, and P if the material finer than the No. 200 sieve is determined to be at least 85% calcium carbonate in accordance with [Tex-406-A](#), Part III, in the case of coarse aggregates made primarily from crushing stone, unless otherwise shown on the plans. Provide test results upon request.

Provide coarse aggregate or combination of aggregates conforming to the gradation requirements shown in Table 4 when tested in accordance with [Tex-401-A](#) unless otherwise specified.

Table 4
Coarse Aggregate Gradation Chart

Aggregate Grade No. ¹	Maximum Nominal Size	Percent Passing on Each Sieve								
		2-1/2"	2"	1-1/2"	1"	3/4"	1/2"	3/8"	#4	#8
1	2"	100	80-100	50-85	—	20-40	—	—	0-10	—
2	1-1/2"	—	100	95-100	—	35-70	—	10-30	0-10	—
3	1-1/2"	—	100	95-100	—	60-90	25-60	—	0-10	—
4 (57)	1"	—	—	100	95-100	—	25-60	—	0-10	0-5
5 (67)	3/4"	—	—	—	100	90-100	—	20-55	0-10	0-5
6 (7)	1/2"	—	—	—	—	100	90-100	40-70	0-15	0-5
7	3/8"	—	—	—	—	—	100	70-95	0-25	—
8	3/8"	—	—	—	—	—	100	95-100	20-65	0-10

1. Corresponding ASTM C33 gradation shown in parentheses.

2.6.2.

Fine Aggregate. Provide fine aggregate consisting of clean, hard, durable particles of natural, manufactured sand; recycled crushed hydraulic cement concrete; slag; lightweight aggregate; or a combination thereof. Provide fine aggregate free of frozen material and injurious amounts of salt, alkali, vegetable matter, or other objectionable material.

Provide fine aggregates in accordance with Table 5 unless otherwise shown on the plans.

Table 5
Fine Aggregate Requirements

Description	Test Method	Limit
Weight of clay lumps, % Max	Tex-413-A	0.50
Organic impurities ¹	Tex-408-A	Color not darker than standard
Sand equivalent, Min	Tex-203-F	80
Fineness modulus	Tex-402-A	2.3-3.1

1. Only when air-entrained concrete is specified.

Provide fine aggregate or combinations of aggregates conforming to the gradation requirements shown in Table 6 when tested in accordance with [Tex-401-A](#) unless otherwise specified.

Table 6
Fine Aggregate Gradation Chart (Grade 1)

Sieve Size	% Passing
3/8"	100
#4	95-100
#8	80-100
#16	50-85
#30	25-65
#50	10-35 ¹
#100	0-10
#200	0-3 ²

1. 6-35 when sand equivalent value is greater than 85.
2. 0-6 for manufactured sand.

2.6.3.

Intermediate Aggregate. Provide intermediate aggregate consisting of clean, hard, durable particles of natural, manufactured sand; slag; recycled crushed hydraulic cement concrete; lightweight aggregate; or a combination thereof when optimized aggregate gradation (OAG) concrete is specified or when used at the Contractor's option. Provide intermediate aggregate free of frozen material and injurious amounts of salt, alkali, vegetable matter, or other objectionable material.

Provide intermediate aggregate in accordance with Table 7.

Table 7
Intermediate Aggregate Requirements

Description	Test Method	Limit
Weight of clay lumps, % Max	Tex-413-A	0.50
L.A. abrasion wear, ¹ % Max	Tex-410-A	40
5-cycle magnesium sulfate soundness, ^{1,2,3} non-air-entrained concrete, % Max	Tex-411-A	25
5-cycle magnesium sulfate soundness, ^{1,2,4} air-entrained concrete, % Max		18
Organic impurities ⁵	Tex-408-A	Color not darker than standard
Loss by decantation, ¹ % Max	Tex-406-A	1.5

1. Applies only to the portion retained on the No. 4 sieve, if more than 30% of the intermediate aggregate is retained on the No. 4 sieve.
2. Recycled crushed hydraulic cement concrete is not subject to 5-cycle magnesium sulfate soundness requirements.
3. Allowed when air-entrained concrete is used at the Contractor's option.
4. Only when air-entrained concrete is required by the plans.
5. Applies only to the portion passing the 3/8-in. sieve, if more than 30% of the intermediate aggregate is passing the 3/8-in. sieve.

For the portion retained on the No. 4 sieve, if more than 30% of the intermediate aggregate is retained on the No. 4 sieve, and in the case of aggregates made mainly from crushing stone, unless otherwise shown on the plans, the loss by decantation may be increased to 3.0% for all classes of concrete and 5.0% for Class A, B, and P if the material finer than the No. 200 sieve is determined to be at least 85% calcium carbonate in accordance with [Tex-406-A](#), Part III. Provide test results upon request.

2.7. **Mortar and Grout.** Furnish pre-packaged grouts in accordance with [DMS-4675](#), "Cementitious Grouts and Mortars for Miscellaneous Applications," when specified for applications other than post-tension grouting.

When grouting or mortaring stone riprap is shown on the plans, provide mortar and grout consisting of one part hydraulic cement, two parts sand, and sufficient water to provide the desired consistency. Other mix proportions allowed as approved. Provide mortar with a consistency such that the mortar can be easily handled and spread by trowel. Provide grout of a consistency that will flow into and completely fill all voids.

Section 421.4.2.6., "Mix Design Options," does not apply for mortar and grout.

2.8. **Storage of Materials.**

2.8.1. **Cement and Supplementary Cementitious Materials.** Store all cement and supplementary cementitious materials in weatherproof enclosures that will protect the materials from dampness or absorption of moisture.

When permitted, small quantities of packaged cementitious material may be stored in the open, on a raised platform, and under waterproof covering for up to 48 hr.

2.8.2. **Aggregates.** Handle and store concrete aggregates in a manner that prevents contamination by foreign materials. Clear and level the sites for the stockpiles of all vegetation if the aggregates are stored on the ground, and do not use the bottom 6-in. layer of aggregate without cleaning the aggregate before use.

Maintain separate stockpiles and prevent intermixing when conditions require the use of two or more grades of coarse aggregates. Separate the stockpiles using physical barriers where space is limited. Store aggregates from different sources in different stockpiles unless the Engineer authorizes pre-blending of the aggregates. Minimize segregation in stockpiles. Remix and test stockpiles when segregation is apparent.

Sprinkle stockpiles to control moisture and temperature as necessary. Maintain reasonably uniform moisture content in aggregate stockpiles.

2.8.3. **Chemical Admixtures.** Store admixtures in conformance with manufacturer's recommendations in tanks that are clearly labeled and prevent admixtures from freezing.

3. EQUIPMENT

3.1. **Concrete Plants and Mixing Equipment.** Except for volumetric stationary plant or truck (auger) mixers, each plant and truck mixer must be certified by NRMCA or have an inspection report signed and sealed by a licensed professional engineer showing concrete measuring, mixing, and delivery equipment meets all requirements of ASTM C94. A new certification or signed and sealed report is required every time a plant is moved. Plants with a licensed professional engineer's inspection require re-inspection every 2 yr. Provide a copy of the certification or the signed and sealed inspection report to the Engineer. Remove equipment or facilities from service until corrected when they fail to meet specification requirements.

When allowed as shown on the plans or by the Engineer, for concrete classes not identified as structural concrete in Table 8 or for Class C concrete not used for bridge-class structures, the Engineer may inspect and approve all plants and trucks instead of NRMCA or non-Department engineer-sealed certifications. The criteria and frequency of Engineer approval of plants and trucks are the same used for NRMCA certification.

Inspect and furnish inspection reports of the condition of blades and fins and their percent wear from the original manufacturer's design for all mixing and agitating equipment annually. Repair mixing equipment exhibiting 10% or more wear before use. If an inspection within 12 mo. is not practical, a 2-mo. grace period (for a maximum of 14 mo. between inspections) is permitted.

3.1.1. **Scales.** Check all scales before beginning of operations, after each move, or whenever their accuracy or adequacy is questioned, and at least once every 6 mo. Immediately correct deficiencies, and recalibrate. Provide a record of calibration showing scales in compliance with ASTM C94 requirements. Check batching accuracy of volumetric water batching devices at least every 90 days. Check batching accuracy of chemical admixture dispensing devices at least every 6 mo. Perform daily checks as necessary to ensure measuring accuracy. Check electronic aggregate moisture probes at least every 90 days in accordance with [Tex-409-A](#), and be accurate to within 1.0% of the actual moisture content.

3.1.2. **Volumetric Mixers.** Provide volumetric mixers with rating plates defining the capacity and the performance of the mixer in accordance with the Volumetric Mixer Manufacturers Bureau or equivalent. Provide volumetric mixers that comply with ASTM C685. Provide test data showing mixers meet the uniformity test requirements in accordance with [Tex-472-A](#).

Unless allowed on the plans or by the Engineer, volumetric truck (auger) mixers may not supply classes of concrete identified as structural concrete in Table 8.

3.1.3. **Agitators and Truck and Stationary Mixers.** Provide stationary and truck mixers capable of combining the ingredients of the concrete into a thoroughly mixed and uniform mass and capable of discharging the concrete so that the requirements of [Tex-472-A](#) are met.

Perform concrete uniformity tests on mixers or agitators in accordance with [Tex-472-A](#) as directed, to resolve issues of mix uniformity and mixer performance.

Perform the mixer or agitator uniformity test at the full rated capacity of the equipment. Remove all equipment that fails the uniformity test from service.

Inspect and maintain mixers and agitators. Keep them free of concrete buildup, and repair or replace worn or damaged blades or fins.

Ensure all mixers have a plate affixed showing manufacturer's recommended operating speed and rated capacity for mixing and agitating.

Truck mixers with automated water and chemical admixture measurement and slump and slump flow monitoring equipment meeting the requirement of ASTM C94 will be allowed. Provide data every 6 mo. substantiating the accuracy of slump, slump flow, temperature, water, and chemical admixture measurements. The slump measured by the automated system must be within 1 in. of the slump measured

in accordance with [Tex-415-A](#). The concrete temperature measured by the automated system must be within 1°F of concrete temperature measured in accordance with [Tex-422-A](#). The Engineer will not use the automated measurements for acceptance.

3.2. **Hauling Equipment.** Provide hauling equipment capable of maintaining the mixed concrete in a thoroughly mixed and uniform mass and discharging the concrete with a satisfactory degree of uniformity.

Provide equipment with smooth, mortar-tight metal containers equipped with gates that prevent accidental discharge of the concrete when using non-agitating equipment for transporting concrete.

Maintain hauling equipment clean and free of built-up concrete.

3.3. **Testing Equipment.** Provide strength-testing equipment when required in accordance with the Contract controlling test unless shown otherwise. Provide calibration records of strength-testing equipment to the Engineer within 1 week after each calibration. Furnish and maintain the following in conformance with the pertinent test procedure unless otherwise shown on the plans or specified.

- Test molds
- Curing facilities
- Maturity meters if used
- Wheelbarrow or other container acceptable for the sampling of the concrete

4. CONSTRUCTION

4.1. **Classification of Concrete Mix Designs.** Provide classes of concrete meeting the requirements shown in Table 8.

A higher-strength class of concrete with equal or lower water-to-cementitious material (w/cm) ratio may be substituted for the specified class of concrete when approved.

4.2. **Mix Design Proportioning.** Furnish mix designs using ACI 211, [Tex-470-A](#), or other approved procedures for the classes of concrete shown in Table 8 unless a design method is shown on the plans. Perform mix design proportioning by absolute volume method unless otherwise approved. Perform cement replacement using equivalent weight method unless otherwise approved.

Do not exceed the maximum w/cm ratio shown in Table 8 when designing the mixture.

4.2.1. **Cementitious Materials.** Do not exceed 700 lb. of cementitious material per cubic yard of concrete unless otherwise specified or approved.

- Use cement of the same type and from the same source for monolithic placements, unless otherwise approved.
- Do not use SCMs when white hydraulic cement is specified.

4.2.2. **Aggregates.** Recycled crushed hydraulic cement concrete may be used as a coarse or fine aggregate in Class A, B, E, and P concrete. Limit recycled crushed concrete fine aggregate to at most 20% of the fine aggregate.

Use light-colored aggregates when white hydraulic cement is specified.

Table 8
Concrete Classes

Class of Concrete	Design Strength ¹ , Min f_c (psi)	Max w/cm Ratio	Cement Types	Mix Design Options	Exceptions to Mix Design Options	General Use ²
A	3,000	0.60	I, II, I/II, IL, IP, IS, IT, V	1, 2, 4, and 7	When the cementitious material content does not exceed 520 lb./cu. yd., any coal ash or natural pozzolan listed in the MPL may be used at a cement replacement of 20%–50%.	Curb, gutter, curb and gutter, concrete retards, sidewalks, driveways, backup walls, anchors, non-reinforced drilled shafts
B	2,000	0.60			Limit the alkali loading to 4.0 lb./cu. yd. or less when using Option 7.	Riprap, traffic signal controller foundations, small roadside signs, anchors
C ³	3,600	0.45	I, II, I/II, IP, IL, IS, IT, V	1–8	N/A	Drilled shafts, bridge substructure, traffic rail, culverts except top slab of direct traffic culverts, headwalls, wing walls, inlets, manholes, traffic barrier
E	3,000	0.50	I, II, I/II, IL, IP, IS, IT, V	1–8	When the cementitious material content does not exceed 520 lb./cu. yd., any coal ash or natural pozzolan listed on the MPLs may be used at a cement replacement of 20%–50%. Limit the alkali loading to 4.0 lb./cu. yd. or less when using Option 7.	Seal concrete
F ³	Note ⁴	0.45	I, II, I/II, IP, IL, IS, IT, V		N/A	Railroad structures; occasionally for bridge piers, columns, bents, post-tension members
H ³	Note ⁴	0.45	I, II, I/II, III, IP, IL, IS, IT, V	1–4, 8	Mix design Options 1–8 allowed for cast-in-place concrete and the following precast elements unless otherwise shown on the plans. <ul style="list-style-type: none">■ Bridge deck panels■ Retaining wall systems■ Coping■ Sound walls■ Wall columns■ Traffic rail■ Traffic barrier■ Long/arch-span culverts■ Precast concrete products in accordance with Item 462, 464, and 465 <p>Do not use Type III cement in mass placement concrete.</p>	Precast concrete, post-tension members
S ³	4,000	0.45	I, II, I/II, IP, IL, IS, IT, V	1–8	N/A	Bridge slabs, top slabs of direct traffic culverts, approach slabs
P	See Item 360, "Concrete Pavement."	0.50	I, II, I/II, IL, IP, IS, IT, V	1–8	When the cementitious material content does not exceed 520 lb./cu. yd., any coal ash or natural pozzolan on the MPLs may be used at a cement replacement of 20%–50%.	Concrete pavement

Class of Concrete	Design Strength ¹ , Min f_c' (psi)	Max w/cm Ratio	Cement Types	Mix Design Options	Exceptions to Mix Design Options	General Use ²
CO ³	4,600	0.40	I, II, I/II, IP, IL, IS, IT, V	1-8	N/A	Bridge deck concrete overlay
LMC ³	4,000	0.40				Latex-modified concrete overlay
SS ³	3,600	0.45	I, II, I/II, III, IP, IL, IS, IT, V	1-8	Use a minimum cementitious material content of 658 lb./cu. yd. of concrete. Limit the alkali loading to 4.0 lb. per cubic yard or less when using Option 7.	Slurry displacement shafts, underwater drilled shafts
K ³	Note ⁴	0.40			N/A	Bridge repair
HES	Note ⁴	0.45	I, IL, II, I/II, III	N/A	Mix design options do not apply. Limit of 700 lb. of cementitious material per cubic yard is not pertinent.	Concrete pavement, concrete pavement repair
"X" (HPC) ^{3,5,6}	Note ⁷	0.45	I, II, I/II, III, IP, IL, IS, IT, V	1-4, and 8	N/A	N/A
"X" (SRC) ^{3,5,6}	Note ⁷	0.45	I/II, II, IP, IL (MS or HS), IS, IT (MS or HS), V	1-4, and 7	When using coal ash, use only coal ashes allowed for SRC in accordance with the coal ash MPL. Type III-MS may be used where allowed. Type I, Type II, and Type III cements may be used when natural pozzolans are used or when coal ashes allowed for SRC in accordance with the coal ash MPL are used, and with a Max w/cm of 0.40. Use Option 7 for precast concrete where allowed.	N/A

1. Design strength must be attained within 56 days.
2. For information only.
3. Structural concrete classes.
4. As shown on the plans or specified.
5. "X" denotes class of concrete as shown on the plans or specified.
6. (HPC): High Performance Concrete, (SRC): Sulfate Resistant Concrete.
7. Same as class of concrete as shown on the plans.

4.2.2.1. **Coarse Aggregate.** Use Grade 2 or 3 coarse aggregate for Class P concrete. Use Grade 8 aggregate in extruded curbs unless otherwise approved. Unless otherwise specified, do not use Grade 1 aggregate in drilled shafts. Use coarse aggregate grades for all other classes of concrete with a maximum nominal size no larger than:

- 1/5 the narrowest dimension between sides of forms;
- 1/3 the depth of slabs;
- 2/3 the minimum clear spacing between individual reinforcing bars or wire, bundles of bars, individual tendons, bundles of tendons, or ducts for cast-in-place concrete; or
- 3/4 the minimum clear spacing between individual reinforcing bars or wires, bundles of bars, individual tendons, bundled tendons, or ducts for precast concrete.

4.2.2.2. **Fine Aggregate.** Use fine aggregate with an acid insoluble residue of at least 60% by weight when tested in accordance with [Tex-612-J](#) in all concrete subject to direct traffic.

Use the following equation to determine whether the aggregate combination meets the acid insoluble residue requirement when blending fine aggregate or using an intermediate aggregate.

$$\frac{(A_1 \times P_1) + (A_2 \times P_2) + (A_{ia} \times P_{ia})}{100} \geq 60\%$$

where:

A_1 = acid insoluble (%) of fine aggregate 1

A_2 = acid insoluble (%) of fine aggregate 2

A_{ia} = acid insoluble (%) of intermediate aggregate passing the 3/8 in. sieve

P_1 = percent by weight of fine aggregate 1 of the fine aggregate blend

P_2 = percent by weight of fine aggregate 2 of the fine aggregate blend

P_{ia} = percent by weight of intermediate aggregate passing the 3/8-in. sieve

Alternatively to the above equation, blend fine aggregate with a Micro-Deval loss of less than 12%, when tested in accordance with [Tex-461-A](#), with at least 40% of a fine aggregate with an acid insoluble residue of at least 60%.

Use the following equation to determine whether the aggregate combination meets the sand equivalency requirement when blending fine aggregate or using an intermediate aggregate.

$$\frac{(SE_1 \times P_1) + (SE_2 \times P_2) + (SE_{ia} \times P_{ia})}{100} \geq 80\%$$

where:

SE_1 = sand equivalency (%) of fine aggregate 1

SE_2 = sand equivalency (%) of fine aggregate 2

SE_{ia} = sand equivalency (%) of intermediate aggregate passing the 3/8 in. sieve

P_1 = percent by weight of fine aggregate 1 of the fine aggregate blend

P_2 = percent by weight of fine aggregate 2 of the fine aggregate blend

P_{ia} = percent by weight of intermediate aggregate passing the 3/8-in. sieve

4.2.3. Chemical Admixtures. Do not use Type C, E, F, or G admixtures in Class S bridge deck concrete. Do not use chemical admixtures containing calcium chloride in any concrete.

Use a 30% calcium nitrite solution when a corrosion-inhibiting admixture is required. Dose the admixture at the rate of gallons of admixture per cubic yard of concrete shown on the plans. Use set retarding admixtures, as needed, to control setting time to ensure concrete containing corrosion inhibiting admixtures remains workable for the entire duration of the concrete placement. Perform setting time testing and slump loss tests during trial batch testing.

4.2.4. Air Entrainment. When air-entrained concrete is shown on the plans, target an entrained air content of 4.0% for Class P concrete and 5.5% for all other classes of concrete. Use an approved air-entraining admixture when air-entrained concrete is specified, or when an air-entraining admixture is used at the Contractor's option. Unless otherwise shown on the plans, acceptance of concrete loads will be based on a tolerance of $\pm 1.5\%$ from the target air content. If the air content is more than 1.5 but less than 3.0% above the target air, the concrete may be accepted based on strength tests. For specified concrete strengths above 5,000 psi, a reduction of 1% entrained air content is permitted.

4.2.5. Slump. Provide concrete with a slump in accordance with Table 9 unless otherwise specified. When approved, the slump of a given concrete mix may be increased above the values shown in Table 9 using chemical admixtures, provided the admixture-treated concrete has the same or lower w/cm ratio and does not exhibit segregation or excessive bleeding. Request approval to exceed the slump limits shown in Table 9 sufficiently in advance for proper evaluation by the Engineer.

Table 9
Placement Slump Requirements

General Use	Placement Slump Range (in.)
Walls (>9 in. thick), caps, columns, piers	3–7
Bridge slabs, top slabs of direct traffic culverts, approach slabs, concrete overlays	3–6
Latex-modified concrete for bridge deck overlays	3–8
Inlets, manholes, walls (<9 in. thick), bridge railing, culverts, concrete traffic barrier, concrete pavement (formed)	4–6
Precast concrete	4–9
Underwater concrete placements	6–8-1/2
Drilled shafts, slurry displaced, underwater drilled shafts	See Item 416, "Drilled Shaft Foundations"
Curb, gutter, curb and gutter, concrete retards, sidewalk, driveways, seal concrete, anchors, riprap, small roadside sign foundations, concrete pavement repair, concrete repair	As approved

4.2.6.

Mix Design Options.

4.2.6.1.

Option 1. Replace cement with at least the minimum dosage listed on the MPL for the coal ash or natural pozzolan used in the mixture. Conduct Option 8 testing to determine the minimum replacement dosage as listed on the MPL. Do not replace more than 50% of the cement. Up to 70% of the cement may be replaced when concrete is used for mass concrete placements.

4.2.6.2.

Option 2. Replace 35–50% of the cement with slag cement. Up to 70% of the cement may be replaced when concrete is used for mass concrete placements.

4.2.6.3.

Option 3. Replace 35–50% of the cement with a combination of coal ash, slag cement, MFA, natural pozzolan, or at least 3% silica fume; however, no more than 10% may be silica fume. Up to 70% of the cement may be replaced when concrete is used for mass concrete placements.

4.2.6.4.

Option 4. Use Type IP, IS, or IT cement as allowed in Table 8 for each class of concrete. When replacing blended cements with additional SCMs, the replacement limits in Option 3 will apply to the final cementitious mixture. When using fly ash or natural pozzolans not having a minimum dosage listed on the MPL in the final cementitious mixture, perform Option 8 testing.

4.2.6.5.

Option 5. Option 5 is left intentionally blank.

4.2.6.6.

Option 6. Use a lithium nitrate admixture at a minimum dosage determined by testing conducted in accordance with [Tex-471-A](#). Before use of the mix, provide an annual certified test report signed and sealed by a licensed professional engineer, from a laboratory on the MPL, certified by the Materials and Tests Division (MTD) as being capable of testing in accordance with [Tex-471-A](#).

4.2.6.7.

Option 7. Ensure the total alkali contribution from the cement in the concrete does not exceed 3.5 lb. per cubic yard of concrete when using hydraulic cement not containing SCMs calculated as follows.

$$\text{lb. alkali per cu. yd.} = \frac{(\text{lb. cement per cu. yd.}) \times (\% \text{ Na}_2\text{O equivalent in cement})}{100}$$

In the above calculation, use the maximum cement alkali content reported on the cement mill certificate.

4.2.6.8.

Option 8. Use Table 10 when deviating from Options 1–3 or when required by the coal ash MPL. Perform required testing annually and submit results to the Engineer. Laboratories performing ASTM C1260, C1567, and C1293 testing must be listed on the Department's MPL. Before use of the mix, provide a certified test report signed and sealed by a licensed professional engineer demonstrating the proposed mixture conforms to the requirements of Table 10.

Provide a certified test report signed and sealed by a licensed professional engineer, when high-performance concrete (HPC) is required, and less than 20% of the cement is replaced with SCMs, demonstrating ASTM C1202 test results indicate the permeability of the concrete is less than 1,500 coulombs tested immediately after either of the following curing schedules.

- Moisture cure specimens 56 days at 73°F.
- Moisture cure specimens 7 days at 73°F followed by 21 days at 100°F.

Table 10
Option 8 Testing and Mix Design Requirements

Scenario	ASTM C1260 Result		Testing Requirements for Mix Design Materials or Prescriptive Mix Design Options ¹
	Mix Design Fine Aggregate	Mix Design Coarse Aggregate	
A	>0.10%	>0.10%	Determine the dosage of SCMs needed to limit the 14-day expansion of each aggregate ¹ to <0.10% when tested individually in accordance with ASTM C1567.
B	≤0.10%	≤0.10%	Use the minimum replacement listed in the coal ash MPL, or When Option 8 is listed on the MPL, use at least 40% coal ash with a maximum CaO ² content of 25%, or Use any ternary combination that replaces 35–50% of cement.
	≤0.10%	ASTM C1293 1 yr. Expansion ≤0.04%	Use a minimum of 20% of any coal ash; or Use any ternary combination that replaces 20–50% of cement.
C	≤0.10%	>0.10%	Determine the dosage of SCMs needed to limit the 14-day expansion of course and intermediate ¹ aggregate to <0.10% when tested individually in accordance with ASTM C1567.
D	>0.10%	≤0.10%	Use the minimum replacement listed in the coal ash MPL, or When Option 8 is listed in the MPL, use a minimum of 40% coal ash with a maximum CaO ² content of 25%, or Use any ternary combination that replaces 35% to 50% of cement.
	>0.10%	ASTM C1293 1 yr. Expansion ≤ 0.04%	Determine the dosage of SCMs needed to limit the 14-day expansion of each fine aggregate to <0.10% when individually tested in accordance with ASTM C1567.

1. Intermediate size aggregates will fall under the requirements of mix design coarse aggregate.
2. Average the CaO content from the previous ten values as listed on the test certificate.

4.2.7.

Optimized Aggregate Gradation (OAG) Concrete. The gradation requirements shown in Table 4 and Table 6 do not apply when OAG concrete is specified or used by the Contractor, unless otherwise shown on the plans.

The fineness modulus for fine aggregate shown in Table 5 does not apply when OAG concrete is used. Establish the optimized aggregate gradation in accordance with [Tex-470-A](#). Use at least 420 lb. per cubic yard of cementitious material when OAG concrete is used unless otherwise approved.

Make necessary adjustments to individual aggregate stockpile proportions during OAG concrete production when the gradation deviates more than 2% from the optimized gradation requirements.

4.2.8.

Self-Consolidating Concrete (SCC). Provide SCC meeting the requirements shown in Table 11 when approved for use in precast concrete. Use concrete with a slump flow that can be placed without vibration and will not segregate or excessively bleed.

Request approval to exceed the slump flow limits sufficiently in advance for proper evaluation by the Engineer.

Table 11
Mix Design Requirements for SCC

Tests	Test Method	Acceptable Limits
Slump flow for precast concrete	ASTM C1611	22–27 ¹
T ₅₀ , sec.	ASTM C1611	2–7
VSI rating	ASTM C1611	0 or 1
Passing ability, in.	ASTM C1621	≤2
Segregation column, %	ASTM C1610	≤10
Bleeding, %	ASTM C232	≤2.5

1. These slump flow limits are generally acceptable for most applications. However, slump flow limits may be adjusted during mix design approval process and when approved.

4.3.

Concrete Trial Batches. Perform trial batches when required by the plans, or when previous satisfactory field data is not available. Submit previous satisfactory field data to the Engineer showing the proposed mix design conforms to specification requirements when trial batches are not required and before concrete is placed. Trial batch test results will be reported to the Contractor and the concrete supplier. Trial batches are not required for Class A, B, or E concrete unless establishing target values as described below.

Perform trial batches for all self-consolidating concrete mix designs.

Make all trial batches using the proposed ingredients in a mixer that is representative of the mixers to be used on the project when required. Make the batch size at least 50% of the mixer's rated capacity. Alternatively, use an AASHTO-accredited laboratory to perform laboratory trial batches using all the proposed ingredients. Perform fresh concrete tests for air content and slump, and make, cure, and test strength specimens for compliance with specification requirements. Test at least one set of design strength specimens, consisting of two specimens per set, at 7-day, 28-day, and at least one additional age unless otherwise directed. Before placing, provide the Engineer the option of witnessing trial batches, including the testing of the concrete. If not provided this option, the Engineer may require additional trial batches, including testing, before the concrete is placed.

Trial batches for precast concrete will be performed in accordance with [Tex-703-I](#) to show proposed mix design meets the requirements of the pertinent class of concrete, or Table 11 when SCC is used.

Establish a compressive strength target value in accordance with [Tex-427-A](#) for each Class A, B, and E concrete.

When changes are made to the type, brand, or source of aggregates, cement, SCM, water, or chemical admixtures, submit previous satisfactory field data, data from a new trial batch, or other evidence showing the change will not adversely affect the relevant properties of the concrete. Submit the data for approval before making changes to the mix design. A change in vendor does not necessarily constitute a change in materials or source. The Engineer may waive new trial batches when there is a prior record of satisfactory performance with the ingredients. During concrete production, dosage changes of chemical admixtures used in the trial batches will not require a re-evaluation of the mix design.

The Contractor has the option of performing trial batches in conjunction with concrete placements except for SCC mixtures, when new trial batches are required during the course of the project. If the concrete fails to meet any requirement, the Engineer will determine acceptability and payment adjustments. Establishing target strength for Class A, B, and E concrete may be conducted during these placements.

Establish the strength–maturity relationship in accordance with [Tex-426-A](#) when the maturity method is specified or permitted. When using the maturity method, any changes in any of the ingredients, including changes in proportions, will require the development of a new strength–maturity relationship for the mix.

4.3.1.

Mix Design of Record. Once a trial batch or previously satisfactory field data substantiates the mix design, the proportions and mixing methods used become the mix design of record. Do not exceed mix design w/cm ratio.

4.4. **Production Testing.**

4.4.1. **Aggregate Moisture Testing.** Determine moisture content in accordance with [Tex-409-A](#) or [Tex-425-A](#) for coarse, intermediate, and fine aggregates at least twice per week, when there is an apparent change, or for new shipments of aggregate. When aggregate hoppers or storage bins are equipped with properly maintained electronic moisture probes for continuous moisture determination, moisture tests in accordance with [Tex-409-A](#) or [Tex-425-A](#) are not required.

When producing SCC, and when aggregate hoppers or storage bins are not equipped with electronic moisture probes, determine the moisture content of the aggregates before producing the first concrete batch each day. Thereafter, determine the moisture content every 4 hr. or when there is an apparent change while SCC is being produced.

4.4.2. **Aggregate Gradation Testing.** Perform a sieve analysis in accordance with [Tex-401-A](#) on each stockpile used in the blend at least 1 day before producing OAG concrete. Perform sieve analysis on each stockpile after every 10,000 cu. yd. of Class P OAG concrete produced, and every 1,000 cu. yd. for all other structural-class concrete. Provide sieve analysis data to the Engineer.

4.5. **Measurement of Materials.**

4.5.1. **Non-Volumetric Mixers.** Measure aggregates by weight. Correct batch weight measurements for aggregate moisture content. Measure mixing water, consisting of water added to the batch, ice added to the batch, water occurring as surface moisture on the aggregates, and water introduced in the form of admixtures, by volume or weight. Measure ice by weight. Measure cement and SCMs in a hopper and on a separate scale from those used for other materials. When measuring by cumulative weight, measure the cement first and ensure the cement meets the cement tolerance shown in Table 12 before measuring the SCMs. Measure concrete chemical admixtures by weight or volume. Measure batch materials within the tolerances shown in Table 12.

Table 12
Mix Design Batching Tolerances—Non-Volumetric Mixers

Material	Tolerance (%)
Cement, wt.	-1 to +3
SCM, wt.	-1 to +3
Cement + SCM (cumulative weighing), wt.	-1 to +3
Water, wt. or volume	$\pm 3^1$
Fine aggregate, wt.	± 2
Coarse aggregate, wt.	± 2
Fine + coarse aggregate (cumulative weighing), wt.	± 1
Chemical admixtures, wt. or volume	± 3

1. Allowable deviation from target weight, not including water withheld or moisture in the aggregate. The Engineer will verify the w/cm ratio is within specified limits.

Ensure the quantity measured, when measuring cementitious materials at less than 30% of scale capacity, is accurate to no less than the required amount and no more than 4% in excess. Ensure the cumulative quantity, when measuring aggregates in a cumulative weigh batcher at less than 30% of the scale capacity, is measured accurately to $\pm 0.3\%$ of scale capacity or $\pm 3\%$ of the required cumulative weight, whichever is less.

Measure cement in number of bags under special circumstances when approved. Use the weights specified on the packaging. Weighing bags of cement is not required. Ensure fractional bags are not used except for small hand-mixed batches of approximately 5 cu. ft. or less and when an approved method of volumetric or weight measurement is used.

4.5.2. **Volumetric Mixers.** Provide an accurate method of measuring all ingredients by volume and calibrate equipment to assure correct measurement of materials within the specified tolerances. Base tolerances on volume-weight relationship established by calibration and measure the various ingredients within the tolerances shown in Table 13. Correct batch measurements for aggregate moisture content.

Table 13
Mix Design Batching Tolerances—Volumetric Mixers

Material	Tolerance
Cement, wt. %	0 to +4
SCM, wt. %	0 to +4
Fine aggregate, wt. %	±2
Coarse aggregate, wt. %	±2
Admixtures, wt. or volume %	±3
Water, wt. or volume %	±1

4.6. **Mixing and Delivering Concrete.**

4.6.1. **Mixing Concrete.** Operate mixers and agitators within the limits of the rated capacity and speed of rotation for mixing and agitation as designated by the manufacturer of the equipment. Provide concrete in a thoroughly mixed and uniform mass with a satisfactory degree of uniformity when tested in accordance with [Tex-472-A](#).

Do not top-load new concrete onto returned concrete.

Adjust mixing times and batching operations as necessary when the concrete contains silica fume to ensure the material is completely and uniformly dispersed in the mix. The dispersion of the silica fume within the mix will be verified by MTD using cylinders made from trial batches. Make necessary changes to the batching operations, if uniform dispersion is not achieved, until uniform and complete dispersion of the silica fume is achieved.

Mix concrete by hand methods or in a small motor-driven mixer when permitted, for small placements of less than 2 cu. yd. For such placements, proportion the mix by volume or weight.

4.6.2. **Delivering Concrete.** Deliver concrete to the project in a thoroughly mixed and uniform mass, and discharge the concrete with a satisfactory degree of uniformity. Conduct testing in accordance with [Tex-472-A](#) when there is a reason to suspect the uniformity of concrete and as directed.

Maintain concrete delivery and placement rates sufficient to prevent cold joints.

Adding chemical admixtures or the portion of water withheld is permitted only at the jobsite, under the supervision of the Engineer, to adjust the slump or slump flow of the concrete. Do not add water or chemical admixtures to the batch after more than an amount needed to conduct slump testing has been discharged. Turn the drum or blades at least 30 additional revolutions at mixing speed to ensure thorough and uniform mixing of the concrete. When this water is added, do not exceed the approved mix design w/cm ratio.

When truck mixers are equipped with automated water or chemical admixture measurement and slump or slump flow monitoring equipment, the addition of water or chemical admixtures during transit is allowed. Reports generated by this equipment must be submitted to the Engineer daily.

Before unloading, furnish the delivery ticket for the batch of concrete containing the information required in accordance with ASTM C94. The Engineer will verify all required information is provided on the delivery tickets. The Engineer may suspend concrete operations until the corrective actions are implemented if delivery tickets do not provide the required information. The Engineer will verify the design w/cm ratio is not exceeded.

An electronic ticket delivery system (e-ticketing) may be used instead of printed tickets. The use of e-ticketing will require written approval. At minimum, the system will:

- provide electronic, real-time e-tickets meeting the requirements above;
- automatically generate e-tickets using software and hardware fully integrated with the batch plant scales used to weigh the material;

- be able to record all water and chemical admixture additions performed at the jobsite or in transit when allowed;
- provide the ability to associate fresh concrete test results with each e-ticket;
- be designed in such a way that data input cannot be altered by the Contractor or the Engineer;
- provide the Engineer access to the e-ticketing data in real-time using a web-based or app-based system compatible with iOS; and
- provide offline capabilities to prevent data loss if power or connectivity is lost.

The Engineer may discontinue use of the e-ticketing and require printed tickets as needed if the e-ticketing system fails to meet the above requirements.

Begin the discharge of concrete delivered in truck mixers within the times shown in Table 14. Concrete delivered after these times and concrete that has not begun to discharge within these times will be rejected. The discharge times shown in Table 14 may be extended provided slump loss testing is conducted in accordance with [Tex-430-A](#) to show concrete will maintain the minimum required slump for the requested discharge time extension. Extended discharge times will be allowed when the concrete temperature at time of discharge is no more than 10°F higher than the slump loss test concrete temperature.

Table 14
Concrete Discharge Times for Truck Mixers

Fresh Concrete Temperature, °F	Max Time After Batching for Concrete Not Containing Type B or D Admixtures, min.	Max Time After Batching for Concrete Containing Type B or D Admixtures, ¹ min.
90 and above	45	75
75 ≤ T < 90	60	90
T < 75	90	120

1. Concrete must contain at least the minimum manufacturer's recommended dosage of Type B or D admixture.

4.7. **Placing, Finishing, and Curing Concrete.** Place, finish, and cure concrete in conformance with the pertinent Items.

4.8. **Sampling and Testing of Concrete.** Unless otherwise specified, all fresh and hardened concrete is subject to testing as follows.

4.8.1. **Certification of Testing Personnel.** Contractor personnel performing testing must be either ACI-certified or qualified by a Department-recognized equivalent written and performance testing program for the tests being performed. Personnel performing these tests are subject to Department approval. Use of a commercial laboratory is permitted at the Contractor's option.

4.8.2. **Fresh Concrete.** Provide safe access and assistance to the Engineer during sampling. Fresh concrete will be sampled for testing at the point of discharge from the delivery equipment or end of belt conveyors.

4.8.3. **Testing Concrete.** The Engineer, unless specified in other Items or shown on the plans, will test the fresh and hardened concrete in accordance with the following methods.

- **Slump.** [Tex-415-A](#)
- **Air Content.** [Tex-414-A](#) or [Tex-416-A](#), only when air-entrained concrete is shown on the plans
- **Temperature.** [Tex-422-A](#)
- **Making and Curing Strength Specimens.** [Tex-447-A](#)
- **Compressive Strength.** [Tex-418-A](#)
- **Flexural Strength.** [Tex-448-A](#)
- **Maturity.** [Tex-426-A](#)

Flexural strength and maturity specimens will not be made unless specified in other Items or shown on the plans.

Concrete with slump less than minimum required after all addition of water withheld will be rejected, unless otherwise allowed by the Engineer. Concrete with slump exceeding maximum allowed may be used at the Contractor's option. If used, Engineer will make, test, and evaluate strength specimens in accordance with Article 421.5., "Acceptance of Concrete." Acceptance of concrete not meeting air content or temperature requirements will be determined by Engineer. Fresh concrete exhibiting segregation and excessive bleeding will be rejected.

4.8.3.1. **Strength Specimen Handling.** After strength test specimens are molded, protect and cure in conformance with pertinent test methods. When necessary, deliver Contractor-molded specimens to curing facilities, remove specimens from their molds, and place specimens in curing tanks within 24–48 hr. after molding, in conformance with pertinent test methods. The Engineer will deliver Department-molded specimens to curing facilities, remove specimens from their molds, and place specimens in curing tanks within 24–48 hr. after molding, in conformance with pertinent test methods.

5. ACCEPTANCE OF CONCRETE

The Engineer will sample and test the fresh and hardened concrete for acceptance. The test results will be reported to the Contractor and the concrete supplier. Investigate the quality of the materials, the concrete production operations, and other possible problem areas to determine the cause for any concrete that fails to meet the required strengths as specified below. Take necessary actions to correct the problem, including redesign of the concrete mix. The Engineer may suspend all concrete operations under the pertinent Items if the Contractor is unable to identify, document, and correct the cause of the low strengths in a timely manner. Resume concrete operations only after obtaining approval for any proposed corrective actions. Concrete failing to meet the required strength as specified below will be evaluated in accordance with Article 421.6., "Measurement and Payment."

5.1. **Structural Class of Concrete.** For concrete classes identified as structural concrete shown in Table 8, the Engineer will make and test 7-day and 28-day specimens, and, if necessary, 56-day specimens. The Engineer will base acceptance on attaining the design strength shown in Table 8 or design strength shown on the plans.

5.2. **Class P and Class High Early Strength (HES).** The Engineer will base acceptance in accordance with Item 360 and Item 361, "Repair of Concrete Pavement."

5.3. **All Other Classes of Concrete.** For concrete classes not identified as structural concrete in Table 8, the Engineer will make and test 7-day specimens. The Engineer will base acceptance on attaining design strength or attaining the 7-day target value established in accordance with [Tex-427-A](#).

6. MEASUREMENT AND PAYMENT

The work performed, materials furnished, equipment, labor, tools, and incidentals will not be measured or paid for directly, but will be subsidiary to pertinent Items.

The following procedure will be used to evaluate concrete where one or more project acceptance test specimens fail to meet the required design strength specified in this Item or shown on the plans.

- The concrete for a given placement will be considered structurally adequate and accepted at full price if the average of 28-day or 56-day set of specimens made at the time of placement meets the required design strength, provided no single specimen test result is less than 85% of the required design strength.
- The Engineer will perform a structural review of the concrete to determine its adequacy to remain in service if the average 28-day or 56-day set of specimens made at the time of placement is less than the required design strength or if any single specimen test result is less than 85% of the required design strength. If the concrete is determined to be structurally adequate, the Engineer will determine the limits of the payment adjustment using the formula below.

- If the in situ concrete strength is needed for the structural review, take cores at locations designated by the Engineer in accordance with [Tex-424-A](#). The Engineer will test the cores. The coring and testing will be at the Contractor's expense.
- If all the tested cores meet the required design strength, the concrete will be paid for at full price.
- If any of the tested cores do not meet the required design strength, but the average strength attained is determined to be structurally adequate, the Engineer will determine the limits of the payment adjustment using the following formula.

$$A = B_p \left[-5.37 \left(\frac{S_a}{S_s} \right)^2 + 11.69 \left(\frac{S_a}{S_s} \right) - 5.32 \right]$$

where:

A = Amount to be paid per unit of measure for the entire placement in question.

S_a = Actual average strength from cylinders or cores. Use values from cores, if taken.

S_s = Minimum required strength (specified).

B_p = Unit bid price.

- If the structural review determines the concrete is not adequate to remain in service, the Engineer will determine the limits of the concrete to be removed.
- The decision to reject structurally inadequate concrete or to apply the payment adjustment factor will be made no later than 7 days after 28-day or 56-day design strength specimens, or cores, if taken, are tested.

Item 440

Reinforcement for Concrete

1. DESCRIPTION

Furnish and place reinforcement of the type, size, and details shown on the plans.

2. MATERIALS

Use deformed steel bar reinforcement unless otherwise specified or allowed.

2.1. **Approved Mills.** Before furnishing steel, producing mills of reinforcing steel for the Department must be pre-approved in accordance with [DMS-7320](#), "Qualification Procedure for Reinforcing Steel Production Mills," by the Materials and Tests Division. The Department's MPL includes approved producing mills. Reinforcing steel obtained from unapproved sources will not be accepted.

2.2. **Deformed Steel Bar Reinforcement.** Provide deformed reinforcing steel conforming to one of the following:

- ASTM A615, Grade 60 or 80;
- ASTM A996, Type A, Grade 60;
- ASTM A996, Type R, Grade 60, permitted in concrete pavement only (Furnish ASTM A996, Type R bars as straight bars only and do not bend them. Bend tests are not required.); or
- ASTM A706, Grade 60 or 80.

Provide the grade of reinforcing steel shown on the plans. Provide Grade 60 if no grade is shown.

The nominal size, area, and weight of reinforcing steel bars this Item covers are shown in Table 1.

Table 1
Size, Area, and Weight of Reinforcing Steel Bars

Bar Size Number (in.)	Diameter (in.)	Area (sq. in.)	Weight per Foot (lb.)
3	0.375	0.11	0.376
4	0.500	0.20	0.668
5	0.625	0.31	1.043
6	0.750	0.44	1.502
7	0.875	0.60	2.044
8	1.000	0.79	2.670
9	1.128	1.00	3.400
10	1.270	1.27	4.303
11	1.410	1.56	5.313
14	1.693	2.25	7.650
18	2.257	4.00	13.60

2.3. **Smooth Steel Bar Reinforcement.** Provide steel conforming to ASTM A615 or meet the physical requirements of ASTM A36 for smooth bars that are larger than No. 3. Designate smooth bars by size number up to No. 4 and by diameter in inches above No. 4.

2.4. **Spiral Reinforcement.** Provide bars or wire for spiral reinforcement of the grade and minimum size or gauge shown on the plans.

Provide smooth or deformed wire conforming to ASTM A1064. Provide bars conforming to ASTM A615; ASTM A996, Type A; or ASTM A675, Grade 80, meeting dimensional requirements of ASTM A615.

2.5. **Weldable Reinforcing Steel.** Provide reinforcing steel conforming to ASTM A706 or with a maximum carbon equivalent (C.E.) of 0.55% if welding of reinforcing steel is required or desired. Provide a report showing the percentages of elements necessary to establish C.E. for reinforcing steel that does not meet ASTM A706, to be structurally welded. These requirements do not pertain to miscellaneous welds on reinforcing steel as defined in Section 448.4.2.1.1., "Miscellaneous Welding Applications."

Calculate C.E. using the following formula:

$$C.E. = \%C + \frac{\%Mn}{6}$$

Do not weld stainless reinforcing steel without permission from the Engineer. Provide stainless reinforcing steel suitable for welding, if required, and submit welding procedures and electrodes to the Engineer for approval.

All welding operations must be performed before any required hot-dip galvanizing.

2.6. **Welded Wire Reinforcement (WWR).** Provide WWR conforming to ASTM A1064. Observe the relations shown in Table 2 among size number, diameter in inches, and area when ordering wire by size numbers, unless otherwise specified. Precede the size number for deformed wire with "D" and for smooth wire with "W."

Designate WWR as shown in the following example: 6 × 12 – W16 × W8 (indicating 6-in. longitudinal wire spacing and 12-in. transverse wire spacing with smooth No. 16 wire longitudinally and smooth No. 8 wire transversely).

Table 2
Wire Size Number, Diameter, and Area

Size No. (in.)	Diameter (in.)	Area (sq. in.)
31	0.628	0.310
30	0.618	0.300
28	0.597	0.280
26	0.575	0.260
24	0.553	0.240
22	0.529	0.220
20	0.505	0.200
18	0.479	0.180
16	0.451	0.160
14	0.422	0.140
12	0.391	0.120
10	0.357	0.100
8	0.319	0.080
7	0.299	0.070
6	0.276	0.060
5.5	0.265	0.055
5	0.252	0.050
4.5	0.239	0.045
4	0.226	0.040
3.5	0.211	0.035
2.9	0.192	0.029
2.5	0.178	0.025
2	0.160	0.020
1.4	0.134	0.014
1.2	0.124	0.012
0.5	0.080	0.005

Note—Size numbers (in.) are the nominal cross-sectional area of the wire in hundredths of a square inch.

Fractional sizes between the sizes listed above are also available and acceptable for use.

2.7. **Welded Deformed Bar Mat Reinforcement.** Provide welded deformed bar mats in accordance with ASTM A184 except as otherwise noted in this Specification. Fabricate welded bar mats from deformed steel bars in accordance with ASTM A706 by securely connecting every intersection with a process of electrical resistance welding that employs the principle of fusion combined with pressure. The bars must be assembled by automatic machines or by other suitable mechanical means that will assure accurate spacing and alignment of all bars of the finished product

2.8. **Epoxy Coating.** Provide epoxy-coated reinforcing steel as shown on the plans. Before furnishing epoxy-coated reinforcing steel, an epoxy applicator must be pre-approved in accordance with [DMS-7330](#), "Qualification Procedure for Reinforcing Steel Epoxy Coating Applicators." The Department's MPL includes approved applicators.

Furnish epoxy-coated reinforcing steel meeting the requirements in Table 3.

Table 3
Epoxy Coating Requirements for Reinforcing Steel

Material	Specification
Bar	ASTM A775 or A934
Wire or WWR	ASTM A884 Class A or B
Mechanical couplers	As shown on the plans
Hardware	As shown on the plans

Use epoxy coating material and coating repair material that complies with [DMS-8130](#), "Epoxy Powder Coating for Reinforcing Steel." Patch no more than 1/4-in. total length in any foot at the applicator's plant.

Maintain identification of all reinforcing steel throughout the coating and fabrication process and until delivery to the project site.

Furnish one copy of a written certification verifying the epoxy-coated reinforcing steel meets the requirements of this Item and one copy of the manufacturer's control tests.

2.9. **Mechanical Couplers.** Use couplers of the type specified in [DMS-4510](#), "Mechanical Couplers for Reinforcing Steel," Article 4510.6.1, "General Requirements," when mechanical splices in reinforcing steel bars are shown on the plans.

Furnish only couplers pre-qualified in accordance with [DMS-4510](#). Ensure sleeve-wedge type couplers are not used on coated reinforcing. Sample mechanical couplers in accordance with [Tex-743-I](#) for testing before use on individual projects. Test the mechanical couplers for every project in which mechanical couplers are used in accordance with [Tex-744-I](#). Furnish couplers only at locations shown on the plans.

Furnish couplers for stainless reinforcing steel with the same alloy designation as the reinforcing steel.

Provide hot-dip or mechanically galvanized couplers when splicing galvanized reinforcing steel or CGR.

2.10. **Fibers.** Supply fibers conforming to [DMS-4550](#), "Fibers for Concrete," at the minimum dosage listed in the Department's MPL, when shown on the plans. Use non-metallic fibers when shown on the plans.

2.11. **Stainless Reinforcing Steel.** Provide deformed steel bars of the types shown in Table 4 and conforming to ASTM A955, Grade 60 or higher when stainless reinforcing steel is required on the plans.

Table 4
Acceptable Types of Deformed Stainless Steel Bar

Universal Numbering System designation	S31653	S31803	S24100	S32304
AISI type	316LN	2205	XM-28	2304

2.12. **Low-Carbon and Low-Chromium Reinforcing Steel.** Provide deformed steel bars conforming to ASTM A1035, Grade 100, Type CS when low carbon and low chromium reinforcing steel is required on the plans. Type CM will be permitted only if specifically allowed as shown on the plans.

2.13. **Glass-Fiber Reinforced Polymer (GFRP) Bars.** For reinforced concrete bridge decks, provide bars conforming to ASTM D7957/D7957M when GFRP bars are required on the plans. Provide GFRP bars with a minimum modulus of elasticity of 7,500 ksi when GFRP bars are required on the plans. Provide sample certification demonstrating the GFRP bar supplier has produced bar that meets the material specifications 2 mo. before fabrication. Furnish certification upon shipment that the GFRP bar supplied meets these requirements.

2.14. **Galvanized Reinforcement.** Provide galvanized reinforcing steel conforming to one of the following as shown on the plans:

- zinc-coated, hot-dip galvanized Class I or II steel reinforcement conforming to ASTM A767, Grade 60 or 80; or
- continuously hot-dip galvanized reinforcement (CGR) conforming to ASTM A1094 steel reinforcement, Grade 60 or 80.

3. CONSTRUCTION

3.1. **Bending.** Fabricate reinforcing steel bars in accordance with the CRSI *Manual of Standard Practice* to the shapes and dimensions shown on the plans. Fabricate in the shop if possible. Field-fabricate, if permitted, using an approved method. Replace improperly fabricated, damaged, or broken bars at no additional expense to the Department. Repair damaged or broken bars embedded in a previous concrete placement using an approved method.

Unless otherwise shown on the plans, the inside diameter of bar bends, in terms of the nominal bar diameter (d), must not be less than that shown in Table 5.

Table 5 Minimum Inside Diameter of Bar Bends		
Bend	Bar Size No. (in.)	Diameter
Bends of 90° and greater in stirrups, ties, and other secondary bars that enclose another bar in the bend	3, 4, 5	4d ¹
	6, 7, 8	6d
Bends in main bars and in secondary bars not covered above	3-8	6d
	9, 10, 11	8d
	14, 18	10d ²

1. For Grade 80 bars, minimum finished diameter is 5.0db.
2. Do not bend bars larger than No. 14 with grade designation of Grade 80 or higher

Bend-test representative specimens as described for smaller bars in the applicable ASTM specification where bending No. 14 or No. 18 Grade 60 bars is required. Make the required 90° bend around a pin with a diameter of 10 times the nominal diameter of the bar.

Bend stainless reinforcing steel in accordance with ASTM A955.

Do not bend hot-dip galvanized reinforcement. Only minor positioning adjustments are permitted.

Bending CGR is permitted after galvanizing.

3.2. **Tolerances.** Fabrication tolerances for bars are shown in Figure 1.

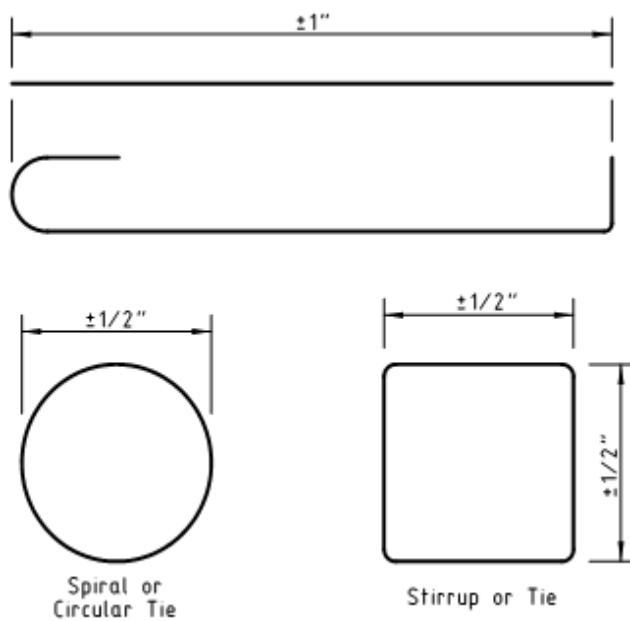


Figure 1
Fabrication Tolerances for Bars

3.3.

Storage. Store reinforcement above the ground on platforms, skids, or other supports, and protect it from damage and deterioration. Ensure reinforcement is free of dirt, paint, grease, oil, and other foreign materials when it is placed in the work. Use reinforcement free of defects such as cracks and delaminations. Rust, surface seams, surface irregularities, or mill scale will not be cause for rejection if the minimum cross-sectional area of a hand wire-brushed specimen meets the requirements for the size of steel specified.

Do not allow stainless reinforcing steel to be in direct contact with uncoated reinforcing steel, or with galvanized reinforcing steel. This does not apply to stainless steel wires and ties. Store stainless reinforcing steel separately, off the ground on wooden supports.

3.4.

Splices. Lap-splice, weld-splice, or mechanically splice bars as shown on the plans. Additional splices not shown on the plans will require approval. Splices not shown on the plans will be permitted in slabs no more than 15 in. in thickness, columns, walls, and parapets.

Do not splice bars less than 30 ft. in plan length unless otherwise approved. For bars exceeding 30 ft. in plan length, the distance center-to-center of splices must be at least 30 ft. minus one splice length, with no more than one individual bar length less than 10 ft. Make lap splices not shown on the plans, but otherwise permitted, in accordance with Table 6. Maintain the specified concrete cover and spacing at splices, and place the lap-spliced bars in contact, securely tied together.

Table 6
Minimum Lap Requirements for Steel Bar Sizes Through No. 11

Bar Size No. (in.)	Uncoated Lap Length	Coated Lap Length
3	1 ft. 4 in.	1 ft. 7 in.
4	1 ft. 10 in.	2 ft. 8 in.
5	2 ft. 8 in.	4 ft. 0 in.
6	3 ft. 8 in.	5 ft. 6 in.
7	4 ft. 10 in.	7 ft. 2 in.
8	6 ft. 0 in.	9 ft. 0 in.
9	7 ft. 4 in.	11 ft. 0 in.
10	8 ft. 11 in.	13 ft. 4 in.
11	10 ft. 6 in.	15 ft. 9 in.

Do not lap No. 14 or No. 18 bars.

Lap spiral steel at least one full turn.

Splice WWR using a lap length that includes the overlap of at least two cross wires plus 2 in. on each sheet or roll. Splices using bars that develop equivalent strength and are lapped in accordance with Table 6 are permitted.

Lap the existing longitudinal bars with the new bars as shown in Table 6 for box culvert extensions with less than 1 ft. of fill. Lap at least 1 ft. 0 in. for extensions with more than 1 ft. of fill.

Ensure welded splices conform to the requirements shown on the plans and Item 448, "Structural Field Welding." Field-prepare ends of reinforcing bars if they will be butt-welded. Delivered bars must be long enough to permit weld preparation.

Install mechanical coupling devices in conformance with the manufacturer's recommendations at locations shown on the plans. Protect threaded male or female connections, and ensure the threaded connections are clean when making the connection. Do not repair damaged threads.

Mechanical coupler alternate equivalent strength arrangements, to be accomplished by substituting larger bar sizes or more bars, will be considered if approved in writing before fabrication of the systems.

3.5.

Placing. Place reinforcement as near as possible to the position shown on the plans. Do not vary bars from plan placement by more than 1/12 of the spacing between bars in the plane of the bar parallel to the nearest surface of concrete. Do not vary bars from plan placement by more than 1/4 in. in the plane of the bar perpendicular to the nearest surface of concrete. Provide a minimum 1-in. clear cover of concrete to the nearest surface of bar unless otherwise shown on the plans.

For bridge slabs, the clear cover tolerance for the top mat of reinforcement is -0, +1/2 in.

Locate the reinforcement accurately in the forms and hold it firmly in place before and during concrete placement by means of bar supports that are adequate in strength and number to prevent displacement and keep the reinforcement at the proper distance from the forms. Provide bar supports in accordance with the CRSI *Manual of Standard Practice*. Use Class 1 supports, approved plastic bar supports, precast mortar, or concrete blocks when supports are in contact with removable or stay-in-place forms. Use Class 3 supports in slab overlays on concrete panels or on existing concrete slabs. Bar supports in contact with soil or subgrade must be approved.

Use Class 1A supports with epoxy-coated reinforcing steel. Use Class 1 or Class 1A supports with CGR. Provide epoxy- or plastic-coated tie wires and clips for use with epoxy-coated reinforcing steel.

Use mortar or concrete with a minimum compressive strength of 5,000 psi for precast bar supports. Provide a suitable tie wire in each block for anchoring to the bar.

Place individual bar supports in rows at 4-ft. maximum spacing in each direction. Place continuous type bar supports at 4-ft. maximum spacing. Use continuous bar supports with permanent metal deck forms.

The exposure of the ends of longitudinals, stirrups, and spacers used to position the reinforcement in concrete pipe and storm drains is not cause for rejection.

Tie reinforcement for bridge slabs and top slabs of direct traffic culverts at all intersections, except tie only alternate intersections where spacing is less than 1 ft. in each direction. Tie the bars at enough intersections to provide a rigid cage of reinforcement for reinforcement cages for other structural members. Fasten mats of WWR securely at the ends and edges.

Clean mortar, mud, dirt, debris, oil, and other foreign material from the reinforcement before concrete placement. Do not place concrete until authorized.

Stop placement until corrective measures are taken if reinforcement is not adequately supported or tied to resist settlement, reinforcement is floating upward, truss bars are overturning, or movement is detected in any direction during concrete placement.

3.6. **Handling, Placing, and Repairing Epoxy-Coated Reinforcing Steel.**

3.6.1. **Handling.** Provide systems for handling coated reinforcing steel with padded contact areas. Pad bundling bands or use suitable banding to prevent damage to the coating. Lift bundles of coated reinforcement using a strongback, a spreader bar, multiple supports, or a platform bridge. Transport the bundled reinforcement carefully and store it on protective cribbing. Do not drop or drag the coated reinforcement.

3.6.2. **Placing.** Do not flame-cut coated reinforcement. Saw- or shear-cut only when approved. Coat cut ends in accordance with Section 440.3.6.3., "Repairing Coating."

Do not weld or mechanically couple coated reinforcing steel except where specifically shown on the plans. Remove the epoxy coating at least 6 in. beyond the weld limits before welding and 2 in. beyond the limits of the coupler before assembly. Clean the steel of oil, grease, moisture, dirt, welding contamination (slag or acid residue), and rust to a near-white finish after welding or coupling. Check the existing epoxy for damage. Remove any damaged or loose epoxy back to sound epoxy coating.

Coat the splice area after cleaning with epoxy repair material to a thickness of 7–17 mils after curing. Apply a second application of repair material to the bar and coupler interface to ensure complete sealing of the joint.

3.6.3. **Repairing Coating.** Use material that complies with the requirements of this Item and ASTM D3963 for repairing of the coating. Make repairs in conformance with procedures recommended by the manufacturer of the epoxy coating powder. Apply at least the same coating thickness as required for the original coating for areas to be patched. Repair all visible damage to the coating.

Repair sawed and sheared ends, cuts, breaks, and other damage promptly before additional oxidation occurs. Clean areas to be repaired to ensure they are free of surface contaminants. Make repairs in the shop or field as required.

3.7. **Repair of Galvanized Reinforcing Steel.** Repair damaged galvanized surfaces in accordance with Section 445.3.4.2. "Repair Processes."

3.8. **Handling and Placing Stainless Reinforcing Steel.** Handle, cut, and place stainless reinforcing steel bar using tools that are not used on carbon steel. Do not use carbon steel tools, chains, or slings when handling stainless steel. Use only nylon or polypropylene slings. Cut stainless steel reinforcing using shears, saws, abrasive cutoff wheels, or torches. Remove any thermal oxidation using pickling paste. Do not field bend stainless steel reinforcing without approval.

Use 16-gauge fully annealed stainless steel tie wire conforming to the material properties listed in Section 440.2.11., "Stainless Reinforcing Steel." Support all stainless reinforcing steel on solid plastic, stainless steel, or epoxy-coated steel chairs. Do not use uncoated carbon steel chairs in contact with stainless reinforcing steel.

3.9. **Bending, Handling, Repairing, and Placing GFRP Bars.** Fabricate, handle, repair, and place GFRP bars in accordance with the AASHTO LRFD Bridge Design Guide Specifications for GFRP-Reinforced Concrete, Section 6, "Construction Specifications."

4. MEASUREMENT AND PAYMENT

The work performed, materials furnished, equipment, labor, tools, and incidentals will not be measured or paid for directly, but will be subsidiary to pertinent items.

Item 500

Mobilization

1. DESCRIPTION

Establish and remove offices, plants, and facilities. Move personnel, equipment, and supplies to and from the project or the vicinity of the project site to begin work or complete work on Contract Items. Bonds and insurance are required for performing mobilization.

For Contracts with emergency mobilization, provide a person and method of contact available 24 hr. per day, 7 days per week, unless otherwise shown on the plans. The time of notice will be the transmission time of the written notice or notice provided orally by the Department's representative.

2. MEASUREMENT

This Item will be measured by the lump sum or each as the work progresses. Mobilization is calculated on the base bid only and will not be paid for separately on any additive alternate items added to the Contract.

3. PAYMENT

For this Item, the adjusted Contract amount will be calculated as the total Contract amount less the lump sum for mobilization. Material on hand will not be considered as a construction item earned when calculating mobilization payment. Except for Contracts with callout or emergency work, mobilization will be paid in partial payments as follows.

- Payment will be made upon presentation of a paid invoice for the payment or performance bonds and required insurance.
- Payment will be made upon verification of documented expenditures for plant and facility setup. The combined amount for all these facilities will be no more than 10% of the mobilization lump sum or 1% of the total Contract amount, whichever is less.
- When 1% of the adjusted Contract amount for construction Items is earned, 50% of the mobilization lump sum bid or 5% of the total Contract amount, whichever is less, will be paid. Previous payments under this Item will be deducted from this amount.
- When 5% of the adjusted Contract amount for construction Items is earned, 75% of the mobilization lump sum bid or 10% of the total Contract amount, whichever is less, will be paid. Previous payments under the Item will be deducted from this amount.
- When 10% of the adjusted Contract amount for construction Items is earned, 90% of the mobilization lump sum bid or 10% of the total Contract amount, whichever is less, will be paid. Previous payments under this Item will be deducted from this amount.
- Upon final acceptance, 97% of the mobilization lump sum bid will be paid. Previous payments under this Item will be deducted from this amount.
- Payment for the remainder of the lump sum bid for "Mobilization" will be made after all submittals are received, after final quantities have been determined, and when any separate vegetative establishment and maintenance, test, and performance periods provided for in the Contract have been successfully completed.

For projects with extended maintenance or performance periods, payment for the remainder of the lump sum bid for "Mobilization" will be made 6 mo. after final acceptance.

For Contracts with callout or emergency work, "Mobilization" will be paid as follows.

- Payment will be made upon presentation of a paid invoice for the payment of performance bonds and required insurance.
- Mobilization for callout work will be paid for each callout work request.
- Mobilization for emergency work will be paid for each emergency work request.

Item 506

Temporary Erosion, Sedimentation, and Environmental Controls

1. DESCRIPTION

Install, maintain, and remove erosion, sedimentation, and environmental control measures to prevent or reduce the discharge of pollutants and protect environmental resources in accordance with the Stormwater Pollution Prevention Plan (SWP3) and environmental layout shown on the plans. Comply with Texas Pollutant Discharge Elimination System (TPDES) Construction General Permit (CGP) TXR150000 requirements. Control measures are defined as Best Management Practices (BMPs) used to prevent or reduce the discharge of pollutants and measures to protect environmental resources. Control measures include, but are not limited to, rock filter dams, temporary pipe slope drains, temporary paved flumes, construction exits, earthwork for erosion control, pipe, construction perimeter fence, sandbags, temporary sediment control fence, biodegradable erosion control logs, vertical tracking, temporary or permanent seeding, and other measures. Erosion and sediment control devices must be selected from the Erosion Control Approved Products List. Perform work in a manner to prevent degradation of receiving waters, protect environmental resources, facilitate project construction, and comply with applicable federal, state, and local regulations. Ensure the installation and maintenance of control measures are performed in conformance with the manufacturer's or designer's specifications.

2. MATERIALS

Furnish materials in accordance with the following.

- Item 161, "Compost"
- Item 432, "Riprap"
- Item 556, "Pipe Underdrains"

2.1. Rock Filter Dams.

Aggregate. Furnish aggregate with approved hardness, durability, cleanliness, and resistance to crumbling, flaking, and eroding. Provide the following.

- **Types 1, 2, and 4 Rock Filter Dams.** Use 3–6-in. aggregate.
- **Type 3 Rock Filter Dams.** Use 4–8-in. aggregate.

Wire. Provide minimum 20-gauge galvanized wire for the steel wire mesh and tie wires for Types 2 and 3 rock filter dams. Type 4 dams require:

- a double-twisted, hexagonal weave with a nominal mesh opening of 2-1/2 × 3-1/4 in.,
- minimum 0.0866-in. steel wire for netting,
- minimum 0.1063-in. steel wire for selvages and corners, and
- minimum 0.0866 in. for binding or tie wire.

Sandbag Material. Furnish sandbags meeting Section 506.2.8., "Sandbags," except that any gradation of aggregate may be used to fill the sandbags.

Temporary Pipe Slope Drains. Provide corrugated metal pipe, polyvinyl chloride (PVC) pipe, flexible tubing, watertight connection bands, grommet materials, prefabricated fittings, and flared entrance sections as shown on the plans. Recycled and other materials meeting these requirements are allowed if approved.

Furnish concrete in accordance with Item 432.

2.3. **Temporary Paved Flumes.** Furnish asphalt concrete, hydraulic cement concrete, or other comparable non-erodible material as shown on the plans. Provide rock or rubble with a minimum diameter of 6 in. and a maximum volume of 1/2 cu. ft. for the construction of energy dissipaters.

2.4. **Construction Exits.** Provide materials as shown on the plans and in accordance with this Section.

2.4.1. **Rock Construction Exit.** Provide crushed aggregate for long- and short-term construction exits. Furnish aggregates that are clean, hard, durable, and free of adherent coatings such as salt, alkali, dirt, clay, loam, shale, soft or flaky materials, and organic and injurious matter. Use 4–8-in. aggregate for Type 1. Use 2–4-in. aggregate for Type 3.

2.4.2. **Timber Construction Exit.** Furnish No. 2 quality or better railroad ties and timbers for long-term construction exits, free of large and loose knots and treated to control rot. Fasten timbers using nuts and bolts or lag bolts, of at least 1/2 in. diameter, unless otherwise shown on the plans or allowed. Provide plywood or pressed wafer board at least 1/2 in. thick for short-term exits.

2.4.3. **Foundation Course.** Provide a foundation course consisting of flexible base, bituminous concrete, hydraulic cement concrete, or other materials as shown on the plans or directed.

2.5. **Embankment for Erosion Control.** Provide rock, loam, clay, topsoil, or other earth materials that will form a stable embankment to meet the intended use.

2.6. **Pipe.** Provide pipe outlet material in accordance with Item 556 and as shown on the plans.

2.7. **Construction Perimeter Fence.**

2.7.1. **Posts.** Provide essentially straight wood or steel posts that are at least 60 in. long. Furnish soft wood posts with a minimum diameter of 3 in. or use nominal 2 × 4-in. boards. Furnish hardwood posts with a minimum cross-section of 1-1/2 × 1-1/5 in. Furnish T- or L-shaped steel posts with a minimum weight of 1.25 lb. per foot.

2.7.2. **Fence.** Provide orange construction fencing as approved.

2.7.3. **Fence Wire.** Provide 14-gauge or larger galvanized smooth or twisted wire. Provide 16-gauge or larger tie wire.

2.7.4. **Flagging.** Provide brightly colored flagging that is fade-resistant and at least 3/4 in. wide to provide maximum visibility both day and night.

2.7.5. **Staples.** Provide staples with a crown at least 1/2 in. wide and legs at least 1/2 in. long.

2.7.6. **Used Materials.** Previously used materials meeting the applicable requirements may be used if approved.

2.8. **Sandbags.** Provide sandbag material of polypropylene, polyethylene, or polyamide woven fabric with a minimum unit weight of 4 oz. per square yard, a Mullen burst-strength exceeding 300 psi, and an ultraviolet (UV) stability exceeding 70%.

Use natural coarse sand or manufactured sand meeting the gradation shown in Table 1 to fill sandbags. Filled sandbags must be 24–30 in. long, 16–18 in. wide, and 6–8 in. thick.

Table 1
Sand Gradation

Sieve Size	Retained (% by Weight)
#4	Maximum 3%
#100	Minimum 80%
#200	Minimum 95%

Aggregate may be used instead of sand for situations where sandbags are not adjacent to traffic. The aggregate size must not exceed 3/8 in.

2.9. **Temporary Sediment Control Fence.** Provide a net-reinforced fence using woven geotextile fabric. Logos visible to the traveling public will not be allowed.

2.9.1. **Fabric.** Provide fabric materials in accordance with [DMS-6230](#), “Temporary Sediment Control Fence Fabric.”

2.9.2. **Posts.** Provide essentially straight wood or steel posts with a minimum length of 48 in., unless otherwise shown on the plans. Furnish soft wood posts at least 3 in. in diameter or use nominal 2 x 4-in. boards. Furnish hardwood posts with a minimum cross-section of 1-1/2 x 1-1/2 in. Furnish T- or L-shaped steel posts with a minimum weight of 1.25 lb. per foot.

2.9.3. **Net Reinforcement.** Provide net reinforcement of at least 12.5-gauge (Standard Wire Gauge) galvanized welded wire mesh, with a maximum opening size of 2 x 4 in., at least 24 in. wide, unless otherwise shown on the plans.

2.9.4. **Staples.** Provide staples with a crown at least 3/4 in. wide and legs 1/2 in. long.

2.9.5. **Used Materials.** Use recycled material meeting the applicable requirements if approved.

2.10. **Biodegradable Erosion Control Logs.**

2.10.1. **Core Material.** Furnish core material that is biodegradable or recyclable. Use compost, mulch, aspen excelsior wood fibers, chipped site vegetation, agricultural rice or wheat straw, coconut fiber, 100% recyclable fibers, or any other acceptable material unless specifically shown on the plans. Permit no more than 5% of the material to escape from the containment mesh. Furnish compost in accordance with Item 161.

2.10.2. **Containment Mesh.** Furnish containment mesh that is 100% biodegradable, photodegradable, or recyclable, such as burlap, twine, UV photodegradable plastic, polyester, or any other acceptable material.

Furnish biodegradable or photodegradable containment mesh when log will remain in place as part of a vegetative system.

Furnish recyclable containment mesh for temporary installations.

2.10.3. **Size.** Furnish biodegradable erosion control logs with diameters as shown on the plans or as directed. Stuff containment mesh densely so logs do not deform.

3. QUALIFICATIONS, TRAINING, AND EMPLOYEE REQUIREMENTS

3.1. **Contractor Responsible Person Environmental (CRPE) Qualifications and Responsibilities.** Provide and designate in writing at the preconstruction conference a CRPE and alternate CRPE who have overall responsibility for managing environmental compliance. The CRPE will implement stormwater and erosion control practices, oversee and observe stormwater control measure monitoring and management, oversee environmental compliance requirements, and monitor the project site daily and produce daily monitoring reports as long as there are BMPs in place or soil disturbing activities are evident to ensure compliance with the SWP3 and TPDES CGP TXR150000. Take required training in accordance with Section 7.7.4.4, “Training.”

Maintain daily monitor reports and make them available within 24 hr. upon request. During time suspensions when work is not occurring or on Contract non-work days, daily inspections are not required unless a rain event has occurred. The CRPE will provide recommendations on how to improve the effectiveness of control measures. Attend the Department's preconstruction conference for the project.

Ensure training is completed in accordance with Section 7.7.4.4., "Training," by all applicable personnel before employees work on the project. Document, maintain, and make available within 24 hr. of a request, a list, signed by the CRPE, of all applicable Contractor and subcontractor employees who have completed the training. Include the employee's name, the training course name, and the date the employee completed the training.

3.2. **Contractor Superintendent Qualifications and Responsibilities.** Provide a superintendent who is competent, has experience with and knowledge of stormwater management, and is knowledgeable of the requirements and the conditions of the TPDES CGP TXR150000. The superintendent will manage and oversee the day-to-day operations and activities at the project site, work with the CRPE to provide effective stormwater management at the project site, represent and act on behalf of the Contractor, and attend the Department's preconstruction conference for the project. Take training as required in Section 7.7.4.4., "Training."

4. CONSTRUCTION

4.1. **Contractor Responsibilities.** Implement the SWP3 for the project site in accordance with the plans and specifications, TPDES CGP TXR150000, and as directed. Coordinate stormwater management with all other work on the project. Develop and implement an SWP3 for project-specific material supply plants within and outside the Department's right of way in conformance with the specific or general stormwater permit requirements. Prevent water pollution from stormwater associated with construction activity from entering any surface water or private property on or adjacent to the project site.

4.2. **Implementation.** The CRPE, or alternate CRPE, must be accessible by telephone and able to respond to project-related stormwater management or other environmental emergencies 24 hr. per day.

4.2.1. **Commencement.** Implement the SWP3 as shown on the plans and as directed. Contractor-proposed recommendations for changes will be allowed as approved. Conform to the established guidelines in the TPDES CGP TXR150000 to make changes. Do not implement changes until approval has been received and changes have been incorporated into the plans. Minor adjustments to meet field conditions are allowed and will be recorded in the SWP3.

4.2.2. **Phasing.** Implement control measures before the commencement of activities that result in soil disturbance. Phase and minimize the soil disturbance to the areas shown on the plans. Coordinate temporary control measures with permanent control measures and all other work activities on the project to assure economical, effective, safe, and continuous water pollution prevention. Provide control measures that are appropriate to the construction means, methods, and sequencing allowed by the Contract. Exercise precaution throughout the life of the project to prevent pollution of ground waters and surface waters. Schedule and perform clearing and grubbing operations so that stabilization measures will follow immediately thereafter if project conditions permit. Bring all grading sections to final grade as soon as possible and implement temporary and permanent control measures at the earliest time possible. Implement temporary control measures when required by TPDES CGP TXR150000 or otherwise necessitated by project conditions.

Do not prolong final grading and shaping. Preserve vegetation where possible throughout the project, and minimize clearing, grubbing, and excavation within stream banks, bed, and approach sections.

4.3. **General.**

4.3.1. **Temporary Alterations or Control Measure Removal.** Altering or removal of control measures is allowed when control measures are restored within the same working day.

4.3.2. **Stabilization.** Initiate stabilization for disturbed areas no more than 14 days after the construction activities in that portion of the site have temporarily or permanently ceased. Establish a uniform vegetative cover or use another stabilization practice in accordance with TPDES CGP TXR150000.

4.3.3. **Finished Work.** Remove and dispose of all temporary control measures upon acceptance of vegetative cover or other stabilization practice unless otherwise directed. Complete soil disturbing activities and establish a uniform perennial vegetative cover. A project will not be considered for acceptance until a vegetative cover of 70% density of existing adjacent undisturbed areas is obtained or equivalent permanent stabilization is obtained in accordance with TPDES CGP TXR150000. The Engineer may accept the work before vegetative cover of 70% density of existing adjacent undisturbed areas. An exception will be allowed in arid areas as defined in TPDES CGP TXR150000.

4.3.4. **Restricted Activities and Required Precautions.** Do not discharge onto the ground or into surface waters any pollutants such as chemicals, raw sewage, fuels, lubricants, coolants, hydraulic fluids, bitumens, or any other petroleum product. Operate and maintain equipment onsite to prevent actual or potential water pollution. Manage, control, and dispose of litter onsite such that no adverse impacts to water quality occur. Prevent dust from creating a potential or actual unsafe condition, public nuisance, or condition endangering the value, utility, or appearance of any property. Wash out concrete trucks only as described in TPDES CGP TXR150000. Use appropriate controls to minimize the offsite transport of suspended sediments and other pollutants if it is necessary to pump or channel standing water (i.e., dewatering). Immediately address chemical and hydrocarbon spills caused by the Contractor. Keep a spill kit onsite. Prevent discharges that would contribute to a violation of Edwards Aquifer Rules, water quality standards, the impairment of a listed water body, or other state or federal law.

4.4. **Installation, Maintenance, and Removal Work.** Perform work in accordance with the SWP3, in conformance with manufacturers' guidelines, and in accordance with TPDES CGP TXR150000. Install and maintain the integrity of temporary erosion and sedimentation control devices to accumulate silt and debris until soil disturbing activities are completed and permanent erosion control features are in place, or the disturbed area has been adequately stabilized as approved.

The Department will inspect and document the condition of the control measures at the frequency shown on the plans and will provide the Construction SWP3 Field Inspection and Maintenance Reports to the Contractor. Make corrections as soon as possible before the next anticipated rain event or within 7 calendar days after being able to enter the worksite for each control measure. The only acceptable reason for not accomplishing the corrections within the timeframe specified is when site conditions are considered "too wet to work." Take immediate action if a correction is deemed critical as directed. When corrections are not made within the established timeframe, all work will cease on the project and time charges will continue while the control measures are brought into compliance. Commence work once the Engineer reviews and documents the project is in compliance. Commencing work does not release the Contractor of the liability for noncompliance with the SWP3, the plans, or TPDES CGP TXR150000.

The Engineer may limit the disturbed area if the Contractor cannot control soil erosion and sedimentation resulting from the Contractor's operations. Implement additional controls as directed.

Remove devices upon approval or as directed. Finish-grade and dress the area upon removal. Stabilize disturbed areas in accordance with TPDES CGP TXR150000, and as shown on the plans or directed. Materials removed are considered consumed by the project. Retain ownership of stockpiled material and remove it from the project when new installations or replacements are no longer required.

4.4.1. **Rock Filter Dams for Erosion Control.** Remove trees, brush, stumps, and other objectionable material that may interfere with the construction of rock filter dams. Place sandbags as a foundation when required or at the Contractor's option.

Place the aggregate to the lines, height, and slopes specified, without undue voids for Types 1, 2, 3, and 5. Place the aggregate on the mesh and then fold the mesh at the upstream side over the aggregate and secure it to itself on the downstream side using wire ties, or hog rings for Type 2 and Type 3, or as directed.

Place rock filter dams perpendicular to the flow of the stream or channel unless otherwise directed. Construct filter dams in accordance with the following criteria unless otherwise shown on the plans.

4.4.1.1.

Type 1 (Non-Reinforced).

- **Height.** At least 18 in. measured vertically from existing ground to top of filter dam.
- **Top Width.** At least 2 ft.
- **Slopes.** No steeper than 2:1.

4.4.1.2.

Type 2 (Reinforced).

- **Height.** At least 18 in. measured vertically from existing ground to top of filter dam.
- **Top Width.** At least 2 ft.
- **Slopes.** No steeper than 2:1.

4.4.1.3.

Type 3 (Reinforced).

- **Height.** At least 36 in. measured vertically from existing ground to top of filter dam.
- **Top Width.** At least 2 ft.
- **Slopes.** No steeper than 2:1.

4.4.1.4.

Type 4 (Sack Gabions). Unfold sack gabions and smooth out kinks and bends. Connect the sides by lacing in a single-loop-double-loop pattern on 4–5-in. spacing for vertical filling. Pull the end lacing rod at one end until tight, wrap around the end, and twist four times. Fill with stone at the filling end, pull the rod tight, cut the wire with approximately 6 in. remaining, and twist wires four times.

Place the sack flat in a filling trough, fill with stone, connect sides, and secure ends as described above for horizontal filling.

Lift and place without damaging the gabion. Shape sack gabions to existing contours.

4.4.1.5.

Type 5. Provide rock filter dams as shown on the plans.

4.4.2.

Temporary Pipe Slope Drains. Install pipe with a slope as shown on the plans or as directed. Construct embankment for the drainage system in 8-in. lifts to the required elevations. Hand-tamp the soil around and under the entrance section to the top of the embankment as shown on the plans or as directed. Form the top of the embankment or earth dike over the pipe slope drain at least 1 ft. higher than the top of the inlet pipe at all points. Secure the pipe with hold-downs or hold-down grommets spaced at most 10 ft. on center. Construct the energy dissipaters or sediment traps as shown on the plans or as directed. Construct the sediment trap using concrete or rubble riprap in accordance with Item 432, when shown on the plans.

4.4.3.

Temporary Paved Flumes. Construct paved flumes as shown on the plans or as directed. Provide excavation and embankment (including compaction of the subgrade) of material to the dimensions shown on the plans unless otherwise indicated. Install a rock or rubble riprap energy dissipater, constructed from the materials specified above, to a minimum depth of 9 in. at the flume outlet to the limits shown on the plans or as directed.

4.4.4.

Construction Exits. Prevent traffic from crossing or exiting the construction site or moving directly onto a public roadway, alley, sidewalk, parking area, or other right of way areas other than at the location of construction exits when tracking conditions exist. Construct exits for either long- or short-term use.

4.4.4.1.

Long-Term. Place the exit over a foundation course as required. Grade the foundation course or compacted subgrade to direct runoff from the construction exits to a sediment trap as shown on the plans or as directed. Construct exits with a width of at least 14 ft. for one-way and 20 ft. for two-way traffic for the full width of the exit, or as directed.

4.4.4.1.1.

Type 1. Construct to a depth of at least 8 in. using crushed aggregate as shown on the plans or as directed.

4.4.4.1.2. **Type 2.** Construct using railroad ties and timbers as shown on the plans or as directed.

4.4.4.2. **Short-Term.**

4.4.4.2.1. **Type 3.** Construct using crushed aggregate, plywood, or wafer board. This type of exit may be used for daily operations where long-term exits are not practical.

4.4.4.2.2. **Type 4.** Construct as shown on the plans or as directed.

4.4.5. **Earthwork for Erosion Control.** Perform excavation and embankment operations to minimize erosion and to remove collected sediments from other erosion control devices.

4.4.5.1. **Excavation and Embankment for Erosion Control Features.** Place earth dikes, swales, or combinations of both along the low crown of daily lift placement, or as directed, to prevent runoff spillover. Place swales and dikes at other locations as shown on the plans or as directed to prevent runoff spillover or to divert runoff. Construct cuts with the low end blocked with undisturbed earth to prevent erosion of hillsides. Construct sediment traps at drainage structures in conjunction with other erosion control measures as shown on the plans or as directed.

Create a sediment basin, where required, providing 3,600 cu. ft. of storage per acre drained, or equivalent control measures for drainage locations that serve an area with 10 or more disturbed acres at one time, not including offsite areas.

4.4.5.2. **Excavation of Sediment and Debris.** Remove sediment and debris when accumulation affects the performance of the devices, after a rain, and when directed.

4.4.6. **Construction Perimeter Fence.** Construct, align, and locate fencing as shown on the plans or as directed.

4.4.6.1. **Installation of Posts.** Embed posts 18 in. deep or adequately anchor in rock, with a spacing of 8–10 ft.

4.4.6.2. **Wire Attachment.** Attach the top wire to the posts at least 3 ft. from the ground. Attach the lower wire midway between the ground and the top wire.

4.4.6.3. **Flag Attachment.** Attach flagging to both wire strands midway between each post. Use flagging at least 18 in. long. Tie flagging to the wire using a square knot.

4.4.7. **Sandbags for Erosion Control.** Construct a berm or dam of sandbags that will intercept sediment-laden stormwater runoff from disturbed areas, create a retention pond, detain sediment, and release water in sheet flow. Fill each bag with sand so that at least the top 6 in. of the bag is unfilled to allow for proper tying of the open end. Place the sandbags with their tied ends in the same direction. Offset subsequent rows of sandbags 1/2 the length of the preceding row. Place a single layer of sandbags downstream as a secondary debris trap. Place additional sandbags as necessary or as directed for supplementary support to berms or dams of sandbags or earth.

4.4.8. **Temporary Sediment Control Fence.** Provide temporary sediment control fence near the downstream perimeter of a disturbed area to intercept sediment from sheet flow. Incorporate the fence into erosion control measures used to control sediment in areas of higher flow. Install the fence as shown on the plans, in accordance with this Section, or as directed.

4.4.8.1. **Installation of Posts.** Embed posts at least 18 in. deep or adequately anchor, if in rock, with a spacing of 6–8 ft., and install on a slight angle toward the runoff source.

4.4.8.2. **Fabric Anchoring.** Dig trenches along the uphill side of the fence to anchor 6–8 in. of fabric. Provide a minimum trench cross-section of 6 × 6 in. Place the fabric against the side of the trench and align approximately 2 in. of fabric along the bottom in the upstream direction. Backfill the trench, then hand-tamp.

4.4.8.3. **Fabric and Net Reinforcement Attachment.** Attach the reinforcement to wooden posts using staples, or to steel posts using T-clips, in at least four places equally spaced unless otherwise shown on the plans. Sewn vertical pockets may be used to attach reinforcement to end posts. Fasten the fabric to the top strand of reinforcement using hog rings or cord every 15 in. or less.

4.4.8.4. **Fabric and Net Splices.** Locate splices at a fence post with a minimum lap of 6 in. attached in at least six places equally spaced unless otherwise shown on the plans. Do not locate splices in concentrated flow areas.

Requirements for installation of used temporary sediment control fence include the following:

- fabric with minimal or no visible signs of biodegradation (weak fibers),
- fabric without excessive patching (more than one patch every 15–20 ft.),
- posts without bends, and
- backing without holes.

4.4.9. **Biodegradable Erosion Control Logs.** Install biodegradable erosion control logs near the downstream perimeter of a disturbed area to intercept sediment from sheet flow. Incorporate the biodegradable erosion control logs into the erosion measures used to control sediment in areas of higher flow. Install, align, and locate the biodegradable erosion control logs as specified below, as shown on the plans, or as directed.

Secure biodegradable erosion control logs in a method adequate to prevent displacement resulting from normal rain events, to prevent damage to the logs, and as approved, such that flow is not allowed under the logs. Temporarily removing and replacing biodegradable erosion logs to facilitate daily work is allowed at the Contractor's expense.

4.4.10. **Vertical Tracking.** Perform vertical tracking on slopes to temporarily stabilize soil. Provide equipment with a track undercarriage capable of producing a linear soil impression measuring at least 12 in. long × 2–4 in. wide × 1/2–2 in. deep. Do not exceed 12 in. between track impressions. Install continuous linear track impressions where the 12-in. length impressions are perpendicular to the slope. Vertical tracking is required on projects where soil disturbing activities have occurred, unless otherwise approved.

4.5. **Monitoring and Documentation.** Monitor the control measures daily as long as there are BMPs in place or soil disturbing activities are evident to ensure compliance with the SWP3 and TPDES CGP TXR150000. During time suspensions when work is not occurring or contract non-work days, daily inspections are not required unless a rain event has occurred. Monitoring will consist of, but is not limited to, observing, inspecting, and documenting site locations with control measures and discharge points to provide maintenance and inspection of controls in accordance with the SWP3. Keep written records of daily monitoring. Document in the daily monitoring report the control measure condition, the date of inspection, required corrective actions, the responsible person for making the corrections, and the date corrective actions were completed. Maintain records of all monitoring reports at the project site or at an approved place. Provide copies within 7 days. Together, the CRPE and an Engineer's representative will complete the Construction Stage Gate Checklist periodically as directed.

5. MEASUREMENT

5.1. **Rock Filter Dams.** Installation or removal of rock filter dams will be measured by the foot or by the cubic yard. The measured volume will include sandbags, when used.

5.1.1. **Linear Measurement.** When rock filter dams are measured by the foot, measurement will be along the centerline of the top of the dam.

5.1.2. **Volume Measurement.** When rock filter dams are measured by the cubic yard, measurement will be based on the volume of rock computed by the method of average end areas.

5.1.2.1. **Installation.** Measurement will be made in final position.

5.1.2.2. **Removal.** Measurement will be made at the point of removal.

5.2. **Temporary Pipe Slope Drains.** Temporary pipe slope drains will be measured by the foot.

5.3. **Temporary Paved Flumes.** Temporary paved flumes will be measured by the square yard of surface area. The measured area will include the energy dissipater at the flume outlet.

5.4. **Construction Exits.** Construction exits will be measured by the square yard of surface area.

5.5. **Earthwork for Erosion and Sediment Control.**

5.5.1. **Equipment and Labor Measurement.** Equipment and labor used will be measured by the actual number of hours the equipment is operated and the labor is engaged in the work.

5.5.2. **Volume Measurement.**

5.5.2.1. **In Place.**

5.5.2.1.1. **Excavation.** Excavation will be measured by the cubic yard in its original position and the volume computed by the method of average end areas.

5.5.2.1.2. **Embankment.** Embankment will be measured by the cubic yard in its final position by the method of average end areas. The volume of embankment will be determined between:

- the original ground surfaces or the surface upon which the embankment is to be constructed for the feature and
- the lines, grades, and slopes of the accepted embankment for the feature.

5.5.2.2. **In Vehicles.** Excavation and embankment quantities will be combined and paid for under "Earthwork (Erosion and Sediment Control, In Vehicle)." Excavation will be measured by the cubic yard in vehicles at the point of removal. Embankment will be measured by the cubic yard in vehicles measured at the point of delivery. Shrinkage or swelling factors will not be considered in determining the calculated quantities.

5.6. **Construction Perimeter Fence.** Construction perimeter fence will be measured by the foot.

5.7. **Sandbags for Erosion Control.** Sandbags will be measured as each sandbag or by the foot along the top of sandbag berms or dams.

5.8. **Temporary Sediment Control Fence.** Installation or removal of temporary sediment control fence will be measured by the foot.

5.9. **Biodegradable Erosion Control Logs.** Installation or removal of biodegradable erosion control logs will be measured by the foot along the centerline of the top of the control logs.

5.10. **Vertical Tracking.** Vertical tracking will not be measured or paid for directly, but will be subsidiary to this item.

6. PAYMENT

The following will not be paid for directly, but will be subsidiary to pertinent items:

- erosion control measures for Contractor project-specific locations (PSLs) inside and outside the right of way (e.g., construction and haul roads, field offices, equipment and supply areas, plants, and material sources);
- removal of litter, unless a separate pay item is shown on the plans;
- repair to devices and features damaged by Contractor operations;

- added measures and maintenance needed due to negligence, carelessness, lack of maintenance, and failure to install permanent controls;
- removal and reinstallation of devices and features needed for the convenience of the Contractor;
- finish grading and dressing upon removal of the device; and
- minor adjustments including but not limited to plumbing posts, reattaching fabric, minor grading to maintain slopes on an erosion embankment feature, or moving small numbers of sandbags.

Stabilization of disturbed areas will be paid for under pertinent Items except vertical tacking, which will be subsidiary.

Furnishing and installing pipe for outfalls associated with sediment traps and ponds will not be paid for directly, but will be subsidiary to the excavation and embankment under this Item.

6.1. **Rock Filter Dams.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid as follows.

6.1.1. **Installation.** Installation will be paid for as "Rock Filter Dams (Install)" of the type and slope as specified. This price is full compensation for furnishing and operating equipment, finish backfill and grading, lacing, proper disposal, labor, materials, tools, and incidentals.

6.1.2. **Removal.** Removal will be paid for as "Rock Filter Dams (Remove)." This price is full compensation for furnishing and operating equipment, proper disposal, labor, materials, tools, and incidentals.

When the Engineer directs that the rock filter dam installation or portions thereof be replaced, payment will be made at the unit price bid for "Rock Filter Dams (Remove)" and for "Rock Filter Dams (Install)" of the type specified. This price is full compensation for furnishing and operating equipment, finish backfill and grading, lacing, proper disposal, labor, materials, tools, and incidentals.

6.2. **Temporary Pipe Slope Drains.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Temporary Pipe Slope Drains" of the size specified. This price is full compensation for furnishing materials, removal and disposal, furnishing and operating equipment, labor, tools, and incidentals.

Removal of temporary pipe slope drains will not be paid for directly, but will be subsidiary to the installation Item. When the Engineer directs that the pipe slope drain installation or portions thereof be replaced, payment will be made at the unit price bid for "Temporary Pipe Slope Drains" of the size specified, which is full compensation for the removal and reinstallation of the pipe drain.

Earthwork required for the pipe slope drain installation, including construction of the sediment trap, will be measured and paid for under "Earthwork for Erosion and Sediment Control."

Riprap concrete or stone, when used as an energy dissipater or as a stabilized sediment trap, will be measured and paid for in accordance with Item 432.

6.3. **Temporary Paved Flumes.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Temporary Paved Flume (Install)" or "Temporary Paved Flume (Remove)." This price is full compensation for furnishing and placing materials, removal and disposal, equipment, labor, tools, and incidentals.

When the Engineer directs that the paved flume installation or portions thereof be replaced, payment will be made at the unit prices bid for "Temporary Paved Flume (Remove)" and "Temporary Paved Flume (Install)." These prices are full compensation for the removal and replacement of the paved flume and for equipment, labor, tools, and incidentals.

Earthwork required for the paved flume installation, including construction of a sediment trap, will be measured and paid for under "Earthwork for Erosion and Sediment Control."

6.4. **Construction Exits.** Contractor-required construction exits from off right of way locations or on right of way PSLs will not be paid for directly, but will be subsidiary to pertinent Items.

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" for construction exits needed on right of way access to work areas required by the Department will be paid for at the unit price bid for "Construction Exits (Install)" of the type specified or "Construction Exits (Remove)." This price is full compensation for furnishing and placing materials, excavating, removal and disposal, cleaning vehicles, labor, tools, and incidentals.

When the Engineer directs that a construction exit or portion thereof be removed and replaced, payment will be made at the unit prices bid for "Construction Exit (Remove)" and "Construction Exit (Install)" of the type specified. These prices are full compensation for the removal and replacement of the construction exit and for equipment, labor, tools, and incidentals.

Construction of sediment traps used in conjunction with the construction exit will be measured and paid for under "Earthwork for Erosion and Sediment Control."

6.5. **Earthwork for Erosion and Sediment Control.**

6.5.1. **Initial Earthwork for Erosion and Sediment Control.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Excavation (Erosion and Sediment Control, In Place)," "Embankment (Erosion and Sediment Control, In Place)," "Excavation (Erosion and Sediment Control, In Vehicle)," "Embankment (Erosion and Sediment Control, (In Vehicle)," or "Earthwork (Erosion and Sediment Control, In Vehicle)." This price is full compensation for excavation and embankment, including hauling; disposal of material not used elsewhere on the project; embankments including furnishing material from approved sources and construction of erosion control features; and equipment, labor, tools, and incidentals.

Sprinkling and rolling required by this Item will not be paid for directly, but will be subsidiary to this Item.

6.5.2. **Maintenance Earthwork for Erosion and Sediment Control for Cleaning and Restoring Control Measures.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid under a Contractor Force Account Item from invoice provided to the Engineer.

This price is full compensation for excavation, embankment, and re-grading, including dewatering for removal of accumulated sediment, and the removal of accumulated sediment in various erosion control installations as directed, hauling, and disposal of material not used elsewhere on the project; excavation for construction of erosion control features; embankments, including furnishing material from approved sources and construction of erosion control features; and equipment, labor, tools, and incidentals.

Earthwork needed to remove and obliterate erosion control features will not be paid for directly, but will be subsidiary to pertinent Items unless otherwise shown on the plans.

Sprinkling and rolling required by this Item will not be paid for directly, but will be subsidiary to this Item.

6.6. **Construction Perimeter Fence.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Construction Perimeter Fence." This price is full compensation for furnishing and placing the fence; digging, fence posts, wire, and flagging; removal and disposal; and materials, equipment, labor, tools, and incidentals.

Removal of construction perimeter fence will not be paid for directly, but will be subsidiary to the installation Item. When the Engineer directs that the perimeter fence installation or portions thereof be removed and replaced, payment will be made at the unit price bid for "Construction Perimeter Fence," which is full compensation for the removal and reinstallation of the construction perimeter fence.

6.7. **Sandbags for Erosion Control.** Sandbags will be paid for at the unit price bid for "Sandbags for Erosion Control" (of the height specified when measurement is by the foot). This price is full compensation for materials, placing sandbags, removal and disposal, equipment, labor, tools, and incidentals.

Removal of sandbags will not be paid for directly, but will be subsidiary to the installation Item. When the Engineer directs that the sandbag installation or portions thereof be replaced, payment will be made at the unit price bid for "Sandbags for Erosion Control," which is full compensation for the reinstallation of the sandbags.

6.8. **Temporary Sediment Control Fence.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid as follows.

6.8.1. **Installation.** Installation will be paid for as "Temporary Sediment-Control Fence (Install)." This price is full compensation for furnishing and operating equipment, finish backfill and grading, lacing, proper disposal, labor, materials, tools, and incidentals.

6.8.2. **Removal.** Removal will be paid for as "Temporary Sediment-Control Fence (Remove)." This price is full compensation for furnishing and operating equipment, proper disposal, labor, materials, tools, and incidentals.

6.9. **Biodegradable Erosion Control Logs.** The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid as follows.

6.9.1. **Installation.** Installation will be paid for as "Biodegradable Erosion Control Logs (Install)" of the size specified. This price is full compensation for furnishing and operating equipment, finish backfill and grading, staking, proper disposal, labor, materials, tools, and incidentals.

6.9.2. **Removal.** Removal will be paid for as "Biodegradable Erosion Control Logs (Remove)." This price is full compensation for furnishing and operating equipment, proper disposal, labor, materials, tools, and incidentals.

6.10. **Vertical Tracking.** Vertical tracking will not be measured or paid for directly, but will be subsidiary to this Item.

Item 520

Weighing and Measuring Equipment

1. DESCRIPTION

Provide weighing and measuring equipment for materials measured or proportioned by weight or volume.

2. EQUIPMENT

Provide certified scales, scale installations, and measuring equipment meeting the requirements of *NIST Handbook 44*, except that the required accuracy must be 0.4% of the material being weighed or measured.

Provide personnel, facilities, and equipment for checking the scales as approved. Check all weighing and measuring equipment after each move and at least once every 6 mo. or when requested.

Calibrate truck scales using weights certified by the Texas Department of Agriculture or an equivalent agency as approved. Provide a written calibration report from a scale mechanic for truck scale calibrations. Cease plant operations during the checking operation. Do not use inaccurate or inadequate scales. Bring performance errors as close to zero as practicable when adjusting equipment.

Furnish enough certified weights to check the accuracy and sensitivity of the scales. Insulate scales against shock, vibrations, or movement of other operating equipment. Provide an automated ticket printout for each truckload of material daily where payment is determined by weight. Each loading ticket must show the ticket number, truck number, gross weight, tare weight, and net weight. At the Contractor's option, an electronic ticket delivery system (e-ticketing) may be used instead of printed tickets. The use of e-ticketing will require written approval of the Engineer. At minimum, the approved system must:

- provide real-time e-tickets in conformance with the applicable bid items,
- automatically generate e-tickets using software and hardware fully integrated with the automated scale system used to weigh the material and designed such that data input cannot be altered by the Contractor or the Engineer,
- provide the Engineer access to the e-ticketing data in real time using a web-based or app-based system compatible with iOS,
- provide offline capabilities to prevent data loss if power or connectivity is lost; and
- require the Contractor and the Engineer to accept or reject the e-ticket and provide the ability to record the information required by the applicable bid items, as well as any comments. Record the time of the approval or rejection and include it in the summary spreadsheet described below. Provide each party the capability to edit their respective actions and any entered information.

The Contractor may discontinue use of the e-ticket system and provide printed tickets as needed to meet the requirements of the applicable bid items.

Provide a summary spreadsheet that lists separately the ticket number, truck number, gross weight, tare weight, net weight, overload weight, and payment weight amounts as shown in Table 1 if required on the plans for materials paid by the ton. Provide this spreadsheet:

- for each lot when materials are paid for in increments of sublots or lots, and
- daily for other materials.

Provide the totals for net weight and overload amounts to be deducted for all summary sheets within 2 days of delivery of materials. Include the overload deduction in the total amount reported for payment. Submissions are subject to verification.

Table 1
Example Spreadsheet

Ticket No.	Truck No.	Gross Wt.	Tare Wt.	Net Wt.	Overload Wt.	Payment Wt.
				Totals	Totals	Totals

Furnish leak-free weighing containers large enough to hold a complete batch of the material being measured.

2.1. **Truck Scales.** Furnish platform truck scales capable of weighing the entire truck or truck–trailer combination in a single draft.

2.2. **Aggregate Batching Scales.** Equip scales used for weighing aggregate with a quick adjustment at zero that provides for any change in tare. Provide a visual means that indicates the required weight for each aggregate.

2.3. **Suspended Hopper.** Provide a means for the addition or the removal of small amounts of material to adjust the quantity to the exact weight per batch. Ensure the scale equipment is level.

2.4. **Belt Scales.** Use belt scales for proportioning aggregate that are accurate to within 1.0% based on the average of three test runs, where no individual test run exceeds 2.0% when checked, in accordance with [Tex-920-K](#).

2.5. **Asphalt Material Meter.** Provide an asphalt material meter with an automatic digital display of the volume or weight of asphalt material. Verify the accuracy of the meter in accordance with [Tex-921-K](#). Ensure the accuracy of the meter is within 0.4% when using the asphalt meter for payment purposes. Ensure the accuracy of the meter is within 1.0% when used to measure component materials only and not for payment.

2.6. **Liquid Asphalt Additive Meters.** Provide a means to check the accuracy of meter output for asphalt primer, fluxing material, and liquid additives. Furnish a meter that reads in increments of 0.1 gal. or less. Verify accuracy of the meter in accordance with [Tex-923-K](#). Ensure the accuracy of the meter within 5.0%.

2.7. **Particulate Solid and Slurry Additive Meters.** Provide a means to check the accuracy of meter output for particulate solids (e.g., hydrated lime or mineral filler) and slurries (e.g., hydrated lime slurry). Ensure the accuracy of the meter within 5.0%.

3. MEASUREMENT AND PAYMENT

The work performed, materials furnished, equipment, labor, tools, and incidentals will not be measured or paid for directly but will be subsidiary to pertinent items.

Item 529

Concrete Curb, Gutter, and Combined Curb and Gutter

1. DESCRIPTION

Construct hydraulic cement concrete curb, gutter, and combined curb and gutter.

2. MATERIALS

Furnish materials in accordance with the following.

- Item 360, "Concrete Pavement"
- Item 420, "Concrete Substructures"
- Item 421, "Hydraulic Cement Concrete"
- Item 440, "Reinforcement for Concrete"

Use Class A concrete or material specified on the plans. Use Grade 8 coarse aggregate for extruded Class A concrete. Use other grades if approved. When curbs are monolithically placed with the concrete pavements, use the same class of concrete as the concrete pavement.

Use of fibers in accordance with [DMS-4550](#), "Fibers for Concrete," to replace reinforcing steel in Class A concrete is allowed unless otherwise shown on the plans. Dose fibers in accordance with the Department's MPL of pre-qualified fibers for concrete.

3. CONSTRUCTION

Provide finished work with a well-compacted mass and a surface free of voids and honeycomb, in the required shape, line, and grade. Round exposed edges using an edging tool of the radius shown on the plans. Mix, place, and cure concrete in accordance with Item 420. Construct joints at locations shown on the plans. Cure for at least 72 hr.

Furnish and place reinforcing steel in accordance with Item 440 unless fiber reinforced concrete is used.

Set and maintain a guideline that conforms to alignment data shown on the plans, with an outline that conforms to the details shown on the plans. Ensure that changes in curb grade and alignment do not exceed 1/4 in. between any two contacts on a 10-ft. straightedge.

3.1. **Conventionally Formed Concrete.** Shape and compact subgrade, foundation, or pavement surface to the line, grade, and cross-section shown on the plans. Lightly sprinkle subgrade or foundation material immediately before concrete placement.

Pour concrete into forms, and strike off with a template 1/4–3/8 in. less than the dimensions of the finished curb unless otherwise approved. After initial set, plaster surface with mortar consisting of one part hydraulic cement and two parts fine aggregate. Brush exposed surfaces to a uniform texture.

Place curbs, gutters, and combined curb and gutters in 50-ft. maximum sections unless otherwise approved.

3.2. **Extruded or Slipformed Concrete.** Shape and compact subgrade, foundation, or pavement surface to the line, grade, and cross-section shown on the plans. Lightly sprinkle subgrade or foundation material immediately before concrete placement. Provide clean surfaces for concrete placement. Coat cleaned

surfaces, if required, with approved adhesive or coating at the rate of application shown on the plans or as directed. Place concrete using approved self-propelled equipment.

The forming tube of the extrusion machine or the form of the slipform machine must be easily adjustable vertically during the forward motion of the machine to provide variable heights necessary to conform to the established gradeline.

Attach a pointer or gauge to the machine so that a continual comparison can be made between the extruded or slipform work and the grade guideline. Other methods may be used when approved.

Finish surfaces immediately after extrusion or slipforming.

3.3.

Curb Joints for Concrete Pavements. Provide transverse expansion and contraction joints in the curb of the same type and location as the adjacent or underlying pavement. Use expansion joint material of the same thickness and type required for the pavement. Extend expansion joints through the curb. Place reinforcing steel for non-monolithic curb construction joints as shown on the plans, unless otherwise approved. Form or saw the contraction joint through the full depth of the monolithic curb.

4.

MEASUREMENT

This Item will be measured by the foot.

5.

PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Concrete Curb," "Concrete Curb (Mono)," or "Concrete Curb and Gutter" of the type specified. This price is full compensation for surface preparation of curb foundation, equipment, labor, materials, tools, and incidentals.

Item 530

Intersections, Driveways, and Turnouts

1. DESCRIPTION

Construct and pave intersections, driveways, and turnouts. Pave existing intersections, driveways, and turnouts.

Intersections are considered areas off the travel lanes and shoulders of the Contract highway on the intersecting highway on the state system. The intersecting on-system highway work will be paid for under this Item only when shown on the plans.

Driveways are defined as private (residential or commercial) and public (county road and city street) access areas off the travel lanes and shoulders.

Turnouts include, but are not limited to, mailbox and litter barrel widenings.

2. MATERIALS

Furnish materials in accordance with the following.

- Item 247, "Flexible Base"
- Item 260, "Lime Treatment (Road-Mixed)"
- Item 275, "Cement Treatment (Road-Mixed)"
- Item 276, "Cement Treatment (Plant-Mixed)"
- Item 292, "Asphalt Treatment (Plant-Mixed)"
- Item 316, "Seal Coat"
- Item 330, "Limestone Rock Asphalt Pavement"
- Item 334, "Hot-Mix Cold-Laid Asphalt Concrete Pavement"
- Item 360, "Concrete Pavement"
- Item 421, "Hydraulic Cement Concrete"
- Item 440, "Reinforcement for Concrete"

3. CONSTRUCTION

Construct and pave intersections, driveways, and turnouts, and pave existing intersections, driveways, and turnouts as shown on the plans or as directed. Place materials in conformance with construction Articles of pertinent Items. Provide uninterrupted access to adjacent property unless otherwise directed. Ensure that abrupt elevation changes in driveway or turnout areas that serve as sidewalks do not exceed 1/4 in. and that the sidewalk area cross slope does not exceed 2%. Ready-mix concrete and hand finishing will be permitted when concrete pavement is specified unless otherwise shown on the plans for intersections.

4. MEASUREMENT

This Item will be measured by the square yard of the final pavement surface, as placed in the field, including radii and turnout.

5. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Intersections," "Driveways," "Turnouts," "Intersections, Driveways, and Turnouts," or "Driveways and Turnouts" of the surface specified.

This price is full compensation for furnishing and operating equipment; excavation and embankment; base and pavement materials; and labor, materials, tools, and incidentals. Drainage structures will be measured and paid for in conformance with the pertinent bid Items.

Item 531

Sidewalks

1. DESCRIPTION

Construct hydraulic cement concrete sidewalks, Americans with Disabilities Act ramps, and steps.

2. MATERIALS

Furnish materials in accordance with the following.

- Item 360, "Concrete Pavement"
- Item 420, "Concrete Substructures"
- Item 421, "Hydraulic Cement Concrete"
- Item 440, "Reinforcement for Concrete"

Use Class A concrete unless otherwise shown on the plans. Use Grade 8 coarse aggregate for extruded Class A concrete. Use other grades if approved.

Use of fibers meeting the requirements of [DMS-4550](#), "Fibers for Concrete," to replace reinforcing steel in Class A concrete is allowed unless otherwise shown on the plans. Dose fibers in accordance with the Department's MPL of prequalified fibers for concrete.

Furnish detectable warning material in accordance with [DMS-4350](#), "Detectable Warning Material."

3. CONSTRUCTION

Shape and compact subgrade, foundation, or pavement surface to the line, grade, and cross-section shown on the plans. Lightly sprinkle subgrade or foundation material immediately before concrete placement. Hand-tamp and sprinkle foundation when placement is directly on subgrade or foundation materials. Remove and dispose of existing concrete in accordance with Item 104, "Removing Concrete." Provide a clean surface for concrete placement directly on the surface material or pavement.

Furnish and place reinforcing steel in accordance with Item 440 unless fiber reinforced concrete is used.

Mix and place concrete in conformance with the pertinent Items. Hand-finishing is allowed for any method of construction. Finish exposed surfaces to a uniform transverse broom finish surface. Curb ramps must include a detectable warning surface and conform to details shown on the plans. Install joints as shown on the plans. Ensure that abrupt changes in sidewalk elevation do not exceed 1/4 in., sidewalk cross slope does not exceed 2%, curb ramp grade does not exceed 8.3%, and flares adjacent to the ramp do not exceed 10% slope measured parallel to the curb line. Ensure that the sidewalk depth and reinforcement are not less than the driveway cross-sectional details shown on the plans where a sidewalk crosses and is part of the concrete driveway.

Use construction methods in conformance with manufacturers' recommendations when installing detectable warning surface. Install detectable warning surface as shown on the plans.

Provide finished work with a well-compacted mass, a surface free of voids and honeycomb, and the required true-to-line shape and grade. Cure for at least 72 hr. in accordance with Item 420.

- 3.1. **Conventionally Formed Concrete.** Provide pre-molded or board expansion joints of the thickness shown on the plans for sidewalk section lengths greater than 8 ft. but less than 40 ft., unless otherwise directed. Terminate workday production at an expansion joint.
- 3.2. **Extruded or Slipformed Concrete.** Provide any additional surface finishing immediately after extrusion or slipforming as shown on the plans. Construct joints at locations as shown on the plans or as directed.

4. MEASUREMENT

Sidewalks will be measured by the square yard of surface area. Curb ramps will be measured by the square yard of surface area or by each. A curb ramp consists of the ramp, landing or turning space, adjacent flares or side curb, and detectable warning surface as shown on the plans. Steps will be measured by the square yard of horizontal surface area.

5. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Concrete Sidewalks" of the depth specified, "Concrete Sidewalk (Steps)," and "Curb Ramps" of the type specified. This price is full compensation for surface preparation of sidewalk foundation; materials; removal and disposal of existing concrete; excavation, hauling, and disposal of excavated material; drilling and doweling into existing concrete curb, sidewalk, and pavement; repair of adjacent street or pavement structure damaged by these operations; and equipment, labor, materials, tools, and incidentals.

Sidewalks that cross and are part of the concrete driveways or turnouts will be measured and paid for in accordance with Item 530, "Intersections, Driveways, and Turnouts."

Special Provisions

SPECIAL PROVISIONS

THE FOLLOWING ITEMS ARE SPECIAL PROVISIONS TO THE NEW BRAUNFELS UTILITIES (NBU)
STANDARD SPECIFICATIONS DATED FEBRUARY 1ST, 2024

Item No. 330 - Wastewater By-Pass Pumping

Remove Section 330.3 Quality Assurance.F.1. and replace with:

1. Bypass pumping locations shall be determined by the contractor.

Remove the Bypass Pumping Schedule section of 330.6 Construction Methods, and replace in its entirety with the following section:

Bypass Pumping Design:

- A. All bypass systems shall comply with all the requirements of this section unless specifically noted otherwise.
- B. The Contractor shall be responsible for the design of the bypass pumping plan and system. Contractor's bypass pumping system design shall be developed based upon the requirements of the Contract Documents.
- C. Contractor's bypass pumping system design shall be developed based upon full pipe flow using a Manning Roughness coefficient of 0.013.
- D. The bypass system shall meet the requirements of all codes and regulatory agencies having jurisdiction.
- E. Contractor shall provide for temporary measures to convey sewage flows and avoid sewage spills should a storm event occur that generates sanitary sewer flows in excess of Contractor's bypass pumping system.

Add to end of section 330.7 Measurement and Payment. Payment:

- B. All trench protection, trenching, backfill, flowable fill, temporary and permanent asphalt pavement restoration, labor, materials, and all other incidentals necessary are subsidiary and will not be measured or paid for directly.

Item No. 510 - Pipe

Remove title of section 510.4 Materials. G: and replace with:

- G. Polyvinyl Chloride (PVC) Pipe (Non-pressure) and Fittings for Gravity Wastewater Mains and Laterals

Add to end of section 510.6 Measurement:

Sanitary sewer laterals shall be measured per each connection installed at the various diameter sizes, from the centerline of the main to the connection at the ROW line.

Relay Short Service shall be measured per each connection installed at the various diameter sizes, from the centerline of the main to the connection at the ROW line.

Relay Long Service shall be measured per each connection installed at the various diameter sizes, from the centerline of the main to the connection at the ROW line.

New Un-metered Short Service shall be measured per each connection installed at the various diameter sizes, from the centerline of the main to the ROW line.

New Un-metered Long Service shall be measured per each connection installed at the various diameter sizes, from the centerline of the main to the ROW line.

Meter relocations shall be measured per each relocated meter.

Cut-in Tee shall be measured per each unit of such assembly of the various sizes of tee installed.

Add to end of section 510.7 Payment:

J. Sanitary Sewer Laterals

Sanitary sewer laterals shall be paid for at the unit bid price per each, complete in place, for the type and size constructed. Price shall be full compensation for furnishing all labor and materials, including pipe, pipe fittings (to include wyes, tees, bends), pumping, bedding, trenching or boring, backfill, trench protection, hauling and disposition of surplus excavated materials, tamping, surface restoration, cutting pavement and surface structures of various types encountered and replacement with like-kind material, concrete encasement, cement stabilized sand, and other incidentals required to complete the work.

1. Payment for the installation of the two-way clean out shall be paid per each under the applicable line item.

K. Water services

New unmetered water services and relay water services shall be paid for at the unit price bid per each, complete in place, for the type and size constructed. Price shall be full compensation for furnishing all labor and materials, including new meter box, trench excavation protection, hauling and disposition of surplus excavated materials, initial and secondary backfill, flowable fill, sand backfill, surface restoration, cutting pavement and surface structures of various types encountered and replacement with like-kind material, tubing and fittings of the various sizes used, and for the service reconnection

from the existing or relocated meter to the existing service line located within public ROW.

L. Cut-in Tee

Cut-in Tee shall be paid for at the unit price bid per each assembly of the various types and sizes of tees to be installed, complete in place, and shall be full payment for furnishing all necessary materials, including cut-in tee, all necessary tie-ins, main repair and connection, removal of existing pipe, testing and placing the connection in service, protective coating materials for bolts, nuts, ferrous surfaces, polyethylene sleeve, cutting and replacement of surface, pavement restoration, flowable fill, thrust blocking, where required, and any necessary hauling and disposition of surplus excavated materials. Unless otherwise provided herein, as separate pay item(s), subsidiary items to the bid price shall include the subsidiary items included under 510.7.Payment.A.Pipe.

Add to end of section 510.7 Payment:

Pay Item: Install/Reconnect Sewer Lateral Service (_" Dia.)	Per Each
Pay Item: Two-Way Cleanout	Per Each
Pay Item: Relay _" Service (Short)	Per Each
Pay Item: Relay _" Service (Long)	Per Each
Pay Item: New _" Unmetered Service (Short)	Per Each
Pay Item: New _" Unmetered Service (Long)	Per Each
Pay Item: Relocate Meter	Per Each
Pay Item: Cut-in Tee, _" Dia. X _" Dia.	Per Each

Remove second sentence of first paragraph of Section 510.7 Payment. A. Pipe and replace with:
Subsidiary items to the bid price per linear foot shall include:

Remove second sentence of first paragraph of Section 510.7 Payment. G. Water Main Abandonment and replace with:

Subsidiary items to the bid price shall include:

Remove second sentence of first paragraph of Section 510.7 Payment. H. Water Service Abandonment and replace with:

Subsidiary items to the bid price shall include:

Remove second sentence of first paragraph of Section 510.7 Payment. I. Wastewater Line Abandonment and replace with:

Subsidiary items to the bid price shall include:

Item No. 522 - Pre-Cast Concrete Vaults

Add to end of first paragraph of Section 522.9 Payment:

“Pre-Cast Concrete Vault” shall also be full compensation for removal of existing vault and vault contents including pipe and valve assembly not shown to remain, installation of new pipe and valve assembly, fittings, connection to existing meter, connection to existing pipes and new service line, testing, and all other items of material, labor, tools and incidentals necessary to complete this work in accordance with the Drawings and applicable specifications.

THE FOLLOWING ITEMS ARE SPECIAL PROVISIONS TO THE TEXAS DEPARTMENT OF TRANSPORTATION (TXDOT) STANDARD SPECIFICATIONS FOR CONSTRUCTION AND MAINTENANCE OF HIGHWAYS, STREETS, AND BRIDGES DATED SEPTEMBER 1ST, 2024

Item 401 Flowable Backfill

Remove in its entirety:

Section 4. Measurement and Section 5. Payment

Add:

Section 4. Measurement and Payment

Flowable Backfill, where required, will not be measured or paid for directly but is subsidiary to pertinent Items.